RCRA REC DS CENTER
CILITY PRAMS
NO. CTD 99067208
THE LOC. R-9
NDM9# 1152

TECHNICAL MEMORANDA

SUMMARY SITE INVESTIGATION AND REMEDIATION REPORT AIRPORT/KLONDIKE AREA AT PRATT & WHITNEY EAST HARTFORD, CONNECTICUT EPA ID No. CTD990672081

Prepared for:

PRATT & WHITNEY
400 Main Street
East Hartford, Connecticut 06108

Prepared by:

LOUREIRO ENGINEERING ASSOCIATES
100 Northwest Drive
Plainville, Connecticut 06062

LEA Comm. No. 68V8124

May 1, 1998

US Environmental Protection Agency

JFK Federal Building (HBT) 90 Canal Street Boston, MA 02203-2211

Attn.: Ernest Waterman

RE: Summary Investigation and Remediation Report - Airport/Klondike Area

Pratt & Whitney, East Hartford, Connecticut

LEA Comm. No. 68V8124

Dear Mr. Waterman:

Attached please find seven copies of additional information for the above-mentioned report for the Airport/Klondike Area at the Pratt & Whitney facility located at 400 Main Street in East Hartford, Connecticut. The information included in this package includes the following:

- Technical Memorandum 1 (New)
- Table 3 for Technical Memorandum 3 (New)

Technical Memorandum (TM) 1 should be inserted into the front of the binder for the Technical Memoranda that was provided to you previously. Please note that TM 1 includes the drawings requested showing the groundwater sampling locations for the entire Airport/Klondike Area. Drawing 1 shows the monitoring well locations while Drawings 2 through 5 show all of the groundwater sampling locations, including monitoring wells, piezometers, and Geoprobe screenpoint samples. Drawings 1 through 5 should be used as a companion to TM 3. The information identified above as "New" has not been previously submitted for review.

As requested by Carolyn Casey, enclosed please find a single copy of Table 3 showing a complete summary of groundwater analytical results with detection limits for TM 3, *Groundwater Sampling and Quality*. For your reference, seven copies of a summary of the default numeric criteria for the Connecticut Remediation Standard Regulation are also enclosed.

If you have any questions or comments concerning the attached information please contact me at 860-747-6181.

Sincerely,

LOUREIRO ENGINEERING ASSOCIATES

Thomas J. Salimeno, P.E.

Project Manager

Attachments

May 1, 1998

US Environmental Protection Agency JFK Federal Building (HBT) 90 Canal Street Boston, MA 02203-2211

Attn.: Ernest Waterman

RE: Summary Investigation and Remediation Report - Airport/Klondike Area

Pratt & Whitney, East Hartford, Connecticut

LEA Comm. No. 68V8124

Dear Mr. Waterman:

Attached please find seven copies of additional information for the above-mentioned report for the Airport/Klondike Area at the Pratt & Whitney facility located at 400 Main Street in East Hartford, Connecticut. The information included in this package includes the following:

Technical Memorandum 1 (New)

• Table 3 for Technical Memorandum 3 (New)

Technical Memorandum (TM) 1 should be inserted into the front of the binder for the Technical Memoranda that was provided to you previously. Please note that TM 1 includes the drawings requested showing the groundwater sampling locations for the entire Airport/Klondike Area. Drawing 1 shows the monitoring well locations while Drawings 2 through 5 show all of the groundwater sampling locations, including monitoring wells, piezometers, and Geoprobe® screenpoint samples. Drawings 1 through 5 should be used as a companion to TM 3. The information identified above as "New" has not been previously submitted for review.

As requested by Carolyn Casey, enclosed please find a single copy of Table 3 showing a complete summary of groundwater analytical results with detection limits for TM 3, *Groundwater Sampling and Quality*. For your reference, seven copies of a summary of the default numeric criteria for the Connecticut Remediation Standard Regulation are also enclosed.

If you have any questions or comments concerning the attached information please contact me at 860-747-6181.

Sincerely,

LOUREIRO ENGINEERING ASSOCIATES

Thomas J. Salimeno, P.E.

Project Manager

Attachments

LOUREIRO ENGINEERING ASSOCIATES, INC.

June 30, 1998

US Environmental Protection Agency JFK Federal Building (HBT) 90 Canal Street

90 Canal Street Boston, MA 02203-2211

Attn.: Juan Perez

RE: Summary Investigation and Remediation Report - Airport/Klondike Area

Pratt & Whitney, East Hartford, Connecticut

LEA Comm. No. 68V8124

Dear Mr. Perez:

Attached please find copies of additional information for the above-mentioned report for the Airport/Klondike Area at the Pratt & Whitney facility located at 400 Main Street in East Hartford, Connecticut. The information provided in this package includes the following:

- 4 Copies Drawing TM3-22 and Drawing TM3-23 (New)
- 6 Copies Drawing TM6-1 and Tables 5 and 7 (Revised)
- 6 Copies X-401 Dry Wells (New)

The information identified as "New" has not been previously submitted for review. The four additional copies of the TM3 drawings combined with the two copies sent to you on June 26, 1998 complete a set of six drawings. The one drawing and two sets of tables for TM6 have been revised and should replace the originals. The X-401 Dry Wells should be added to Volume III of the USTM binders.

If you have any questions or comments concerning the attached information please contact me at 860-747-6181.

Sincerely,

LOUREIRO ENGINEERING ASSOCIATES

Thomas J. Salimeno, P.E.

Project Manager

Attachments

UNIT-SPECIFIC TECHNICAL MEMORANDUM: FORMER PICKLE COMPANY PRATT & WHITNEY, EAST HARTFORD, CT

AREA: North Airport

SUB-AREA: Silver Lane Pickle Company

ENVIRONMENTAL UNIT: Soil Piles and Underground Storage Tanks

Location: In the North Airport Area, this unit is located to the south of and adjacent to Silver Lane at the north end of the runway (Drawing 1). The soil piles and underground storage tanks (USTs) are located in the vicinity former buildings of the former Silver Lane Pickle Company.

Description: The former Silver Lane Pickle Company had three different areas where there were USTs. All of the former USTs were located adjacent to buildings, based on the presence of fill pipes noted on a site plan (Peterson & Hoffman Engineers, 1964). From the northeast to the southwest, there were two USTs with a dispensing pump at one location, three USTs at a second location, and one UST at a third location. The former contents of the USTs are not known, but were likely to have been fuels. Additionally, along the western boundary of the former Silver Lane Pickle Company property, there are several piles of soil which contain debris, including glass, tile, rubber, coal, charcoal, brick fragments, asphalt fragments, and concrete. The approximate location of the soil piles and the USTs are shown on Drawing 1.

Dates of Operation: Based on a review of available Town files, the Silver Lane Pickle Company purchased the property from Frank Gould during the 1918 to 1926 time period. Based on the City Directory, the company was present in 1919. The Silver Lane Pickle Company sold the property to United Aircraft in 1954 and 1963. The former buildings were demolished in 1963 and 1964. Subsequently, the property has been undeveloped (Loureiro Engineering Associates, Inc, 1997). The dates that the USTs were used are not known. It is assumed that the dates of operation of the USTs would have paralleled the existence of the Pickle Company. As for the soil piles, the date that the soil piles were created is not known.

Processes: The former uses of the tanks are unknown, but possibly included the storage of fuels in the USTs for supply to the buildings and vehicles. Additionally, soil and debris was placed in piles.

Aerial Photographs: Large-scale aerial photographs for 1965, 1970, and 1975 were obtained from Keystone Aerial Surveys Inc. Four small, low resolution, aerial photographs from 1934 were obtained from the Fairchild Aerial Survey.

The 1965 photograph indicates several light-colored areas which could possibly be scars remaining from the building demolition. The 1970 and 1975 aerial photographs do not indicate the light-colored

areas. Instead, these photographs show the areas as a grass-covered field. Due to the low resolution of the 1934 photographs, only the buildings of the Pickle Company are identifiable.

Specific Contaminants of Concern: The specific contaminants of concern are unknown. In order to be as comprehensive as possible in the investigation that was conducted, the following constituent groups were analyzed for: volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), semivolatile organic compounds (SVOCs), and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nickel, and zinc).

Potential Release Mechanism: Impacts to soils and groundwater associated with potential leaching from piles of soil and debris and potential spills or leaks associated with the tank filling and dispensing and tank leakage from the bulk fuel storage tanks.

INVESTIGATION AND REMEDIATION ACTIVITIES:

Due to the potential for releases associated with the soil piles and USTs, a subsurface investigation to determine the degree of potential soil and groundwater contamination was performed in October 1996, November 1996, February 1997, and June 1997. Prior to 1996, no investigation of these units had reportedly been performed. The investigations are discussed below in chronological order.

In February 1997, three 1-inch diameter monitoring wells, NA-MW-05 through NA-MW-07, were installed by Loureiro Engineering Associates, Inc. (LEA). The wells were constructed of 9-foot long prepacked screens, set at approximately 2 to 11 feet below grade. These monitoring wells, shown on Drawing 2, were installed as part of an investigation of groundwater contamination emanating from the former Pickle Company Area. During the installation of these monitoring wells, soil samples were collected for laboratory analysis and are discussed in the appropriate portions of the chronological presentation of the investigations.

Supplemental groundwater investigations have also been conducted in the vicinity of the former Pickle Company Area since the installation of these monitoring wells. In order to be as comprehensive as possible, presentation of this incidental data is discussed as part of this Unit-Specific Technical Memorandum.

VOCs detected in groundwater from monitoring well NA-MW-05 have included ethylbenzene (EBZ) and xylenes (XYL) at concentrations of 2.7 micrograms per liter (µg/l) and 1.1 µg/l, respectively. VOCs not were detected in the remaining wells and TPH was not been detected in any of the groundwater samples. Three metals, including barium, lead, and zinc, have been detected in the groundwater samples collected from the wells. Only elevated concentrations of zinc were noted. A summary of the groundwater samples collected and analyses performed is included in Table 1. Concentrations of constituents detected in groundwater samples collected from these monitoring wells are presented in Table 4. A complete summary of groundwater sample analytical results with

detection limits is presented in Table 5. Detected concentrations at each groundwater sampling location are shown on Drawing 2. For a more detailed account of the groundwater sampling conducted in this area refer to Technical Memorandum (TM) 3, Groundwater Sampling and Quality.

October 1996 Investigation (LEA):

Description: On October 15, 1996, a geophysical investigation, consisting of ground penetrating radar (GPR) and magnetometry, of the three tank areas was performed by Kick Geophysical (Kick) under the supervision of a LEA representative. The three areas where the geophysical investigations were conducted are shown on Drawing 1. Additional information on the geophysical investigation is included in *TM 8*, *Geophysical Investigations*.

On October 21 through 29, 1996, 15 soil borings, NA-SB-04 through NA-SB-18, were advanced in the vicinity of the former Pickle Company Area. Borings NA-SB-04 through NA-SB-14 were installed in the vicinity of the three tank areas. Borings NA-SB-15 through NA-SB-18 were installed close to the property line to investigate the potential that contamination might be migrating onto the site from the adjacent properties, specifically a gas station to the north. The soil sampling locations are shown on Drawing 1. Soil samples were collected from the borings in continuous 2-foot intervals to 14 feet, with a 1-foot interval from 14 feet to 15 feet. The depth of 15 feet was selected to ensure that sufficient data were collected for comparisons against the direct exposure criteria of the Connecticut Remediation Standard Regulation (RSR).

A total of 123 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs, including benzene (BZ), EBZ, tetrachloroethylene (PCE), toluene (TL), 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), and XYL. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, two samples from each boring were submitted to Averill Environmental Laboratory, Inc. (AEL) and analyzed for the presence of VOCs, SVOCs, metals, and TPH.

In addition, groundwater samples were collected at select borings, NA-SB-06, NA-SB-09, NA-SB-12, NA-SB-15, NA-SB-16, and NA-SB-18, using Geoprobe screenpoint groundwater sampling techniques. Groundwater samples were collected from depths between 5.5 to 8.5 feet below the ground surface. The groundwater sampling locations are shown on Drawing 2. Groundwater samples from all of these borings were submitted to AEL for analysis for VOCs, metals, and TPH. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: The GPR performed in the western-most area, Area 1, indicated a prominent cylindrical object, probably a pipe, at a depth of 4 to 5 feet (Kick, 1996). A magnetic anomaly was also identified for this area. This area is located immediately adjacent to a chain-link fence that could be causing the magnetic anomaly. A storm drain is also present in this area which could be the cylindrical object. The geophysical results for Areas 2 and 3 did not identify any recognizable tank-like signals.

Based on the boring logs, groundwater was encountered between a depth of 2 to 6 feet from the ground surface. Varved clay was encountered between 12 and 13.5 feet from the surface. A hydrocarbon-like odor was noted in boring NA-SB-04 at a depth of 6 to 8 feet and boring NA-SB-06 at a depth of 2.5 feet to 4 feet. In boring NA-SB-05, clay piping was noted at 3 feet and a sewage odor was noted from 4 to 8 feet. It is possible that this boring was advanced in a former septic system leaching field. Debris, including brick fragments and concrete, was encountered in borings, NA-SB-08, NA-SB-09, NA-SB-11, NA-SB-12, and NA-SB-17, at a maximum depth of 4 feet.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each soil sampling location are shown on Drawing 1. Several VOCs, including TCE, BZ, TL, and PCE, were detected in the soil samples submitted to the LEA Analytical Laboratory. However, all of the detected concentrations had "J" qualifies associated with them, indicating that the value was estimated because the concentration was detected below the method detection limit.

Several VOCs, including methyl ethyl ketone (MEK), TCE, EBZ, and XYL, were detected in soil samples submitted for analysis to AEL. The highest VOC concentrations detected in the soil samples was EBZ and XYL at concentrations of 34,000 and 120,000 J11 micrograms per kilogram (µg/kg), respectively, in boring NA-SB-06 at a depth of 2 to 4 feet. The "J11" qualifier indicates that the value was estimated, because the concentration was above the calibration range. No other VOCs were detected in any of the other soil samples analyzed by AEL.

Naphthalene (NAP), the only SVOC detected, was detected in one of the six soil samples submitted for fixed laboratory analysis. The highest concentration of NAP detected was 1,600 µg/kg in boring NA-SB-06 at a depth of 2 to 4 feet. No other SVOCs were detected in any of the other soil samples analyzed by AEL.

One or more of the metals analyzed were detected in each of the soil samples submitted for analysis. These metals include arsenic, barium, cadmium, chromium, lead, nickel, selenium, and zinc. TPH was detected in 7 of the 39 soil samples analyzed. The highest concentration of TPH detected was at a concentration of 339 milligrams per kilograms (mg/kg) in boring NA-SB-09 at a depth of 2 to 4 feet.

Concentrations of constituents detected in groundwater samples collected for this unit are presented in Table 4. A complete summary of groundwater sample analytical results with detection limits is presented in Table 5. Detected concentrations at each groundwater sampling location are shown on Drawing 2. A sheen was observed in the groundwater sample from boring NA-SB-06.

Several VOCs, including EBZ, TL, and XYL, were detected in only one of the six groundwater samples submitted for fixed laboratory analysis. The highest concentration of the VOCs detected in the groundwater samples was for XYL at a concentration of 3,300 J11 µg/l in boring NA-SB-06. Also, several metals, including lead, cadmium, and zinc were detected in the groundwater samples. The highest concentration for the metals detected was for zinc in boring NA-SB-09 at a concentration of 0.641 milligrams per liter (mg/l).

TPH was detected in the groundwater sample from boring NA-SB-06 at a concentration of 4.4 mg/l. No other VOCs, metals, or TPH were detected in any of the remaining groundwater samples submitted for fixed laboratory analysis.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals (Fuss & O'Neill, 1994). For a more detailed discussion of background concentrations of metals in soil refer to TM 4, Background Soil Sampling and Analysis. Criteria are established in the RSR based on exposure pathways for various environmental media, including soil and groundwater. The evaluation of the soils data is based on a comparison to the default numeric residential direct exposure criteria (RDEC), the industrial/commercial direct exposure criteria (IDEC), and the GB pollutant mobility criteria (GBPMC) included in the RSR. The evaluation of the groundwater data is based on a comparison to the default numeric surface water protection criteria (SWPC), the residential volatilization criteria (RVC), and the industrial/commercial volatilization criteria (IVC) included in the RSR.

Arsenic, cadmium, chromium, nickel, and zinc in the soil samples from borings NA-SB-07, NA-SB-09, NA-SB-10, and NA-SB-13 were detected at concentrations above site-wide background soil concentrations. The concentration of arsenic detected in the soil sample from boring NA-SB-10 exceeds the RDEC and IDEC as shown on Tables 6 and 7, respectively.

For the VOCs, SVOCs and TPH detected in soil, no exceedances of the RDEC or IDEC were noted. The concentrations of EBZ and XYL, detected in boring NA-SB-06 at a depth of 2 to 4 feet, were above the GBPMC as shown on Table 8. However, the EBZ and XYL were detected in an interval below the seasonal high water table which means the GBPMC does not apply.

For the TPH detected in groundwater, no exceedances of the RSR were noted. However, lead was detected at concentrations in groundwater above the SWPC in boring NA-SB-06. Similarly, the

concentrations of cadmium and zinc were detected above the SWPC in boring NA-SB-09. The groundwater samples which exceeded the SWPC are summarized on Table 9.

Based on the presence of VOCs, metals, and TPH, there is evidence that a release of hazardous constituents may have occurred in the vicinity of this unit. The degree and extent of the release has not been adequately characterized in this area and additional soil and groundwater data were necessary to define the extent of the contamination.

November 1996 Investigation (LEA):

Description: On November 1, 1996, three test pits, NA-TP-01 through NA-TP-03, were advanced into the soil piles with a backhoe. The test pits extended to a depth of 6 feet, the maximum reach of the excavator. The locations of the test pits are shown on Drawing 1. Soil samples were collected from each of the sidewalls and the bottom of each test pit.

A total of sixteen soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, one soil sample from each test pit was submitted to AEL and analyzed for the presence of VOCs, metals, and TPH. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the test pit logs, groundwater was not encountered in any of the three test pits. Debris was not observed in test pit NA-TP-01 and the only debris observed in test pit NA-TP-02 was metal. Debris observed in test pit NA-TP-03 included brick and tile at depths between the ground surface and 4 feet and brick, concrete, metal, and tile at depths between 4 and 6 feet from the surface. The material located between 4 feet from the surface and the bottom of the test pit was described as being "sludge-like".

Concentrations of constituents detected in the soil samples collected for this unit are presented in Table 2. A complete summary of soil sample analytical results with detection limits is presented in Table 3. Detected concentrations at each soil sampling location are shown on Drawing 1. VOCs were not detected in the soil samples submitted to the LEA Analytical Laboratory or to AEL.

One or more of the metals analyzed were detected in all three soil samples submitted for analysis. These metals include arsenic, barium, chromium, lead, and zinc.

TPH was detected in two of the three soil samples analyzed. TPH was detected in soil sample NA-TP-02B and in soil sample NA-TP-03B at a concentrations of 88.1 mg/kg at a depth of 6 feet and 315 mg/kg at 6.2 feet, respectively.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. The concentration of metals, including barium, chromium, and zinc in soil sample NA-TP-03B, were detected at concentrations above site-wide background soil concentrations. Although the metal concentrations were above background level concentration, no exceedances of the RDEC or the IDEC were noted.

For the TPH detected in the soil samples, no exceedances were noted, but the presence of these constituents provides evidence that a potential release may have occurred. With respect to the detection of metal and TPH contamination, there is evidence that a release of hazardous constituents may have occurred in the vicinity of this unit. The degree and extent of the release has not been adequately characterized in this area and additional soil data were necessary to define the extent of the contamination.

February 1997 Investigation (LEA):

Description: On February 20, 1997, a soil vapor survey was performed in the vicinity of the eastern most areas, specifically in the vicinity of NA-SB-04 through NA-SB-06. Two sets of sampling were performed, one at a depth of 2.5 feet and the other at a depth of 3.5 feet. Additional information on the soil gas sampling is included in *TM 13*, .Soil Vapor Surveying.

On February 11 through February 26, 1997, 24 soil borings, NA-SB-19 through and NA-SB-42 were advanced in the general vicinity of this unit. Borings NA-SB-19 through NA-SB-27 were installed in the vicinity of the most northeastern of the three tank areas. Borings NA-SB-28 through NA-SB-33 were installed in the vicinity of central tank area. Boring NA-SB-34 was installed in the vicinity of southwestern tank area. Borings NA-SB-36 through NA-SB-42 were installed in the vicinity of the soil piles. A boring NA-SB-35 was not installed.

Soil samples were collected from each of the borings in continuous 2-foot intervals to a depth of 16 feet. The soil sampling locations are shown on Drawing 1. A minimum depth of 16 feet was selected to ensure that sufficient data were collected for comparisons against the direct exposure criteria in the RSR. Wells NA-MW-05 and NA-MW-06 were originally borings NA-SB-25 and NA-SB-26. Well NA-MW-07 was installed in a boring that would have been boring NA-SB-35.

A total of 196 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, two samples from each boring were submitted to AEL and analyzed for the presence of VOCs, metals, and TPH. In addition, one sample per boring was submitted to AEL and analyzed for the presence of SVOCs.

In addition, groundwater samples were collected at select borings, including NA-SB-19, NA-SB-21, NA-SB-24, NA-SB-29, NA-SB-30, NA-SB-32, NA-SB-36, NA-SB-38, NA-SB-40, and NA-SB-41, using Geoprobe® screenpoint groundwater sampling techniques. The groundwater sampling locations are shown on Drawing 2. Groundwater samples were collected from a depth ranging between 4 and 8 feet for all of the borings, except NA-SB-38, which was collected from a depth between 11 and 14 feet. Groundwater samples from all of these borings were submitted to AEL for analysis of VOCs, SVOCs, metals, and TPH. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: For the 2.5 feet set of soil gas analyses, two photoionization detector (PID) reading were observed, one of 0.6 parts per million (ppm) and another of 100 ppm. Two additional PID readings were also observed for the 3.5 feet set of analyses, one greater than 1,000 ppm and the other at 10 ppm. Due to difficulties with the collection of the soil vapor samples as a result of shallow groundwater and low air flows, the soil vapor survey was abandoned. For a more detailed discussion of the soil vapor survey refer to TM 13, Soil Vapor Surveying.

Based on the boring logs, groundwater was encountered between 4 and 9 feet in the borings Varved clay was encountered at 15 feet in borings NA-SB-40 through NA-SB-42 and between 15 and 16 feet in borings NA-SB-21, NA-SB-23, NA-SB-24, NA-SB-25, NA-SB-27, NA-SB-29, NA-SB-30, NA-SB-34, NA-SB-40 through NA-SB-42 and not encountered in the remaining borings.

A hydrocarbon-like odor was noted in borings NA-SB-19 through NA-SB-23 and NA-SB-25 at a depth between 4 and 12 feet. Slight staining was noted in borings NA-SB-20 and NA-SB-21 at 8 feet and NA-SB-30 between 4 and 8 feet. In boring NA-SB-34, clay piping was noted at 3.5 to 4 feet and an organic odor was noted from 6.5 to 7.5 feet. It is possible that this boring was advanced in a former septic system leaching field. A possible mild septic odor was noted in boring NA-SB-30 at 4 to 12 feet. An organic odor was also noted in boring NA-SB-32 from 7.5 to 8 feet and 10 to 11 feet. An undefined odor was noted in boring NA-SB-41 at a depth of 8 to 10 feet and red staining was observed at 2 to 4 feet. Also, an undefined rank odor was noted in boring NA-SB-42 at 2 to 8 feet, and the odor lessened with depth.

Debris and black staining was encountered at maximum depth of 4 feet in borings NA-SB-19 and NA-SB-21 through NA-SB-32 and NA-SB-34. Debris was also found in boring NA-SB-23 at a maximum depth of 8 feet. Similarly, debris was observed in borings NA-SB-36 through NA-SB-38 and NA-SB-40 at approximate depth of 1 to 5 feet. The debris included glass, tile, rubber, coal, charcoal, brick fragments, asphalt fragments, and concrete.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at the soil sampling location are shown on Drawing 1. Several VOCs,

including BZ, PCE, EBZ, TCA, TL, and XYL, were detected in the soil samples submitted to the LEA Analytical Laboratory. TCA, the VOC with the highest concentration, was detected at a depth of 2 to 4 feet from boring NA-SB-40 at 260E μ g/kg. The "E" qualifier indicates that the value was estimated, because the concentration was detected outside of the calibration range.

Several VOCs, including carbon disulfide (CDIS), EBZ, and XYL, were detected in soil samples from borings NA-SB-22 and NA-SB-25 submitted for fixed laboratory analysis at AEL. CDIS was detected at a concentration of 5.9 μ g/kg in boring NA-SB-21 at a depth of 6 to 8 feet. The highest concentrations of EBZ and XYL detected were at concentrations of 360 μ g/kg and 910 μ g/kg in boring NA-SB-25 at 4 to 6 feet. No other VOCs were detected in any of the other soil samples analyzed by AEL. Additionally, XYL and TL in boring NA-SB-22 were classified as "N1" at a depth of 2 to 4 feet and 4 to 6 feet, respectively. The "N1" qualifier indicates that the concentration was above the method detection limit, but below the reportable quantitation limit.

One or more of the metals analyzed were detected in each of the soil samples submitted for analysis. These metals include arsenic, barium, cadmium, chromium, lead, mercury, nickel, silver, and zinc. Lead, the metal detected with the highest concentration, was detected at a concentration of 5,020 mg/kg in boring NA-SB-42 at a depth of 2 to 4 feet.

NAP was detected in the soil samples from borings NA-SB-22 and NA-SB-25 at a depth of 4 feet to 6 feet at concentrations of 710 μ g/kg and 1,100 μ g/kg, respectively. No other SVOCs were detected in any of the other soil samples analyzed by AEL. However, FA and PYR were noted with a "N1" qualifier in the soil sample from boring NA-SB-28 at a depth of 2 to 4 feet.

TPH was detected in 14 of the 57 soil samples analyzed, including samples from borings NA-SB-21, NA-SB-25, NA-SB-28, NA-SB-30, NA-SB-34, NA-SB-36 through NA-SB-38 and NA-SB-40 through NA-SB-42. The highest concentrations of TPH detected were at a depth of 2 to 4 feet in borings NA-SB-41 and NA-SB-42 at concentrations of 3,760 and 10,500 mg/kg, respectively.

Concentrations of constituents detected in groundwater samples collected for this unit are presented in Table 4. A complete summary of groundwater sample analytical results with detection limits is presented in Table 5. Detected concentrations each groundwater sampling location are shown on Drawing 2. Five VOCs, including CDIS, EBZ, TL, and XYL, were detected at concentration less than 13 μ g/l in all of the groundwater samples. No other VOCs were detected in the remaining groundwater samples submitted for fixed laboratory analysis. However, EBZ was noted with a "N1" qualifier in boring NA-SB-21.

Only one SVOC, Bis(2-ethylhexyl)phthalate (DEHP), was detected in one of the groundwater samples with a concentration of $5U \mu g/l$ in boring NA-SB-29. However, the "U" qualifier indicates that the constituent was present in the laboratory blank. NAP was also noted with a "N1" qualifier in boring NA-SB-21. As for the metals detected, including lead, cadmium, and zinc, one or more of

these metals were detected in borings NA-SB-21, NA-SB-29, NA-SB-38, and NA-SB-41 at concentrations less than 0.196 mg/l. TPH was detected in boring NA-SB-21 at a concentration of 2.6 mg/l. No other metals or TPH were detected in any of the remaining groundwater samples submitted for fixed laboratory analysis.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for metals. The concentrations of some of the metals detected in the soil samples are not typical of background concentrations. Higher than background concentrations of barium, chromium, lead, and zinc were detected in several soil samples from borings NA-SB-30, NA-SB-36, NA-SB-38, NA-SB-41, and NA-SB-42. In particular, the lead concentration detected in boring NA-SB-42 exceeded the default numeric RDEC and IDEC as shown on Table 6 and Table 7. The elevated concentration of the metals detected in these borings may be indicative of a release from this unit.

For the VOCs and SVOCs detected in soil, no exceedances of the RSR were noted. For TPH detected, exceedances of the RDEC, the IDEC, and the GBPMC were noted in borings NA-SB-41 and NA-SB-42 at a depth of 2 to 4 feet as shown on Table 6, Table 7, and Table 8.

Based on the presence of metals, VOCs and TPH in the soil samples and metals in the groundwater, there is evidence that a release of hazardous constituents may have occurred in the vicinity of this unit. The degree and extent of the release has not been adequately characterized in this area and additional soil data were necessary to define the extent of the contamination.

June 1997 Investigation (LEA)

Description: On June 2 through 4 1997, seven soil borings, NA-SB-43 through NA-SB-49, were advanced in the vicinity of the soil piles. The borings were located relative to the existing borings where VOCs, metals, and TPH were previously detected. The soil sampling locations are shown on Drawing 1. Soil samples were collected from each of the borings in continuous 2-foot intervals to 16 feet. A minimum depth of 16 feet was selected to ensure that sufficient data was collected for comparisons against the direct exposure criteria in the RSR.

A total of 58 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, at least one sample from each soil boring was submitted to Quanterra, Inc. (QNT) and analyzed for the presence of VOCs, metals, and TPH. In addition, two samples from two separate borings were also analyzed for SVOCs.

In addition, groundwater samples were collected at select borings, including NA-SB-43, NA-SB-49, and NA-SB-50 through NA-SB-54, using Geoprobe® screenpoint groundwater sampling techniques. The groundwater sampling locations are shown on Drawing 2. Groundwater samples were collected

from borings NA-SB-43, NA-SB-49, NA-SB-50, and NA-SB-51 at a depth of 4 to 7 feet. Groundwater samples were collected from borings NA-SB-52, NA-SB-53, and NA-SB-54 at a depth of 5 to 8 feet. Groundwater samples were submitted to QNT for analysis for metals. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the soil boring logs, groundwater was encountered at 4 feet in borings NA-SB-47 and NA-SB-48 and 6 feet in borings NA-SB-43 through NA-SB-46 and NA-SB-49. Varved clay was encountered between 13.5 and 15.5 feet in all of the borings, except NA-SB-44, which did not encounter the clay.

Black staining and trace amounts of debris, having various amounts of coal, cinders, and glass pieces, were observed in borings NA-SB-43 and NA-SB-45 through NA-SB-49 at varying depths from the surface to 6 feet below the surface. No olfactory evidence of contamination was noted in these soil borings.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each soil sampling location are shown on Drawing 1. No VOCs were detected in the soil samples submitted to the LEA Analytical Laboratory. Several VOCs, including acetone (ACT), methylene chloride (MC), and MEK were detected in the soil samples submitted to QNT. No other VOCs were detected in the soil samples submitted to QNT.

Several SVOCS, including benzo[b]fluoranthene (BBF), fluoranthene (FA), and pyrene (PYR) were detected in the soil samples submitted to QNT. All three of these SVOCs were detected in boring NA-SB-49 at a depth of 2 to 4 feet. BBF, FA, and PYR were detected at concentrations of 600 mg/kg, 700 mg/kg, and 680 mg/kg, respectively. No other SVOCs were detected in the soil samples submitted to QNT. TPH was detected in 3 of the 10 soil samples analyzed. TPH was detected at a depth of 2 to 4 feet in borings NA-SB-46, NA-SB-48, and NA-SB-49 with concentrations of 270 mg/kg, 2100 mg/kg, and 5100 mg/kg, respectively.

One or more of the metals analyzed were detected in each of the soil samples submitted for analysis. These metals include arsenic, barium, cadmium, chromium, lead, mercury, nickel, selenium, and zinc.

Concentrations of constituents detected in groundwater samples collected for this unit are presented in Table 4. A complete summary of groundwater analytical results with detection limits is presented in Table 5. Detected concentrations at each groundwater sampling location are shown on Drawing 2. Zinc, the only metal detected in the groundwater samples submitted to QNT, was detected in screenpoint locations NA-SB-43, NA-SB-49, and NA-SB-53 at concentrations of 0.023 mg/l, 0.064 mg/l, and 0.023 mg/l, respectively.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. In general, the concentrations of the metals detected in the soil samples are typical of background concentrations, except for several metals in borings NA-SB-45 and NA-SB-49 at a depth of 2 to 4 feet. Arsenic and lead were detected in borings NA-SB-45 and NA-SB-49 at concentrations that exceed the RDEC and IDEC as shown on Tables 6 and 7.

The ACT and MC, two common laboratory contaminants detected by QNT at estimated concentrations close to the method detection limit, are believed to be laboratory contaminants and are not present at this unit. Similarly, MEK, a less common laboratory contaminant detected by QNT at estimated concentrations close to the method detection limit, is also believed to be a laboratory contaminant

The concentrations of TPH from boring NA-SB-49 exceeds the RDEC, IDEC, and GBPMC as shown on Table 6, Table 7, and Table 8, respectively. In addition, the concentrations of TPH in boring NA-SB-48 at a depth of 2 to 4 feet exceeds the RDEC.

For the metals detected in groundwater, several exceedances of the SWPC were noted. However, additional groundwater data from boring NA-SB-50 through NA-SB-54 indicate that the zinc concentrations from borings NA-SB-29 and NA-SB-38 do not exceed the RSR and the SWPC is not applicable. The downgradient compliance points do not indicate an exceedance of the SWPC. This is justified, because the zinc emanating from borings NA-SB-29 and NA-SB-38 do not discharge directly to the brook at a concentration that exceeds the SWPC. Groundwater samples from NA-SB-50 through NA-SB-53, located between the brook and borings NA-SB-29 and NA-SB-38, have concentrations of zinc below the SWPC.

Soils with concentrations of TPH and metals detected in borings NA-SB-10, NA-SB-41, NA-SB-42, NA-SB-45, NA-SB-48, and NA-SB-49 exceeded the RSR and indicate that the soil have been impacted by a potential release. Soil with contaminant concentrations above the DEC within four feet of the ground surface is recommended for excavation along with the use of an Environmental Land Use Restriction (ELUR) for soils below four feet for the area to satisfy the criteria for inaccessible soil. Considering the above investigations, the remediation of the area near the soil exceedances, within four feet of the ground surface, listed above are scheduled to be remediated as part of the Klondike Soil Removal Project. For a more detailed discussion of the Klondike Soil Removal Project refer to TM 14, Soil Removals. Drawing 1 shows the approximate limits of the proposed excavation.

After these quantities of soil have been removed, confirmational samples of the excavation sidewalls will be collected to confirm the removal of the material. The confirmational samples will be analyzed for VOCs, TPH, and metals to confirm that the constituents detected have been removed. For the remaining soil, an ELUR for industrial/commercial area will be placed on it, in order to satisfy the

RSR criteria for inaccessible soil. Subsequently, with the soil exceedances removed, this unit will have been adequately characterized and no further investigation will be warranted at this unit.

REFERENCES:

Fuss & O'Neill, Inc., 1994, Soil Sampling Background Areas – North Klondike, prepared for Pratt & Whitney.

Fairchild Aerial Photographs, 1934.

Keystone Aerial Surveys, Inc., 1975, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc., 1970, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc., 1965, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Fuss & O'Neill, Inc., 1994, Soil Sampling Background Areas – North Klondike, prepared for Pratt & Whitney.

Loureiro Engineering Associates, October 1997, Environmental Site Assessment Report for a portion of the former Silver Lane Pickle Co., prepared for Pratt & Whitney.

Property Surveyed for United Aircraft Corporation. Silver Lane, East Hartford, Connecticut. October 1962. Last Revised July 1964 by Peterson & Hoffman Engineers.

UNIT-SPECIFIC TECHNICAL MEMORANDUM: NK UNDEVELOPED LAND-OUTSIDE STORAGE AREA

PRATT & WHITNEY, EAST HARTFORD, CT

AREA: North Klondike

SUB-AREA: Undeveloped Land

ENVIRONMENTAL UNIT: Outside Storage Area

Location: In the North Klondike Area, this unit is located at northern-most portion of the North Klondike, approximately 100 feet east of Perimeter Road (Drawing 1).

Description: This unit, which appears to be the result of historic-filling operations, was located within the North Klondike Undeveloped Land Area. The unit is located to the northeast of the Undeveloped Land Area and measures approximately 180 feet by 360 feet. Based upon a review of aerial photographs, the unit is located in an area which may have been a pond between 1965 and 1969. After the area had been filled, this area was used until the mid-1970s for the storage of equipment and materials, including but not limited to, concrete pipe, large vehicles, and heavy equipment. The storage of the materials may have been associated with the various grading and filling projects for the airport.

Dates of Operation: Mid-1960s to Mid-1970s.

Processes: Filling of a low-lying area, probably a pond, with the placement of soil and fill material. Once filled, the area was used for the storage of heavy equipment and construction materials.

Aerial Photographs: Large-scale aerial photographs for 1965, 1970, and 1975 were obtained from Keystone Aerial Surveys Inc. Three smaller-scale aerial photographs for 1969, 1975, and 1987 were obtained from the Pratt & Whitney (P&W) Photographic Services Department.

A review of the 1965 aerial photograph indicates a dark-colored area, located toward the eastern side of this unit, that is possibly a depression containing a pond or wetlands. The 1969 photograph shows the filled area being used for the storage of heavy equipment and construction materials such as concrete pipe. The 1975 photograph indicates that area was not being used for storage and vegetation was established in the area. The 1987 photograph shows that a large portion of the North Klondike Undeveloped Land Area had the trees and vegetation removed. Reportedly, the tree removal was required by the Federal Aviation Administration (FAA).

10/26/98

Specific Contaminants of Concern: The specific contaminants of concern are unknown. In order to be as comprehensive as possible in the investigation that was conducted, the following constituent groups were analyzed for: volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), metals (arsenic, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, nickel, and zinc), polychlorinated biphenyls (PCBs), and total petroleum hydrocarbons (TPH).

Potential Release Mechanism: Impacts to soils and groundwater associated with potential spills, leaks, or materials leaching from the soil and fill material.

INVESTIGATION AND REMEDIATION ACTIVITIES:

Due to the potential for releases associated with the North Klondike Undeveloped Land Area, various historical investigations have been conducted within this area generating analytical data in the general vicinity of the unit. Although not conducted specifically for the Outside Storage Area, these investigations have generated incidental analytical data in the immediate vicinity of the unit. In order to be as comprehensive as possible, presentation of this data is included below in chronological order. Historical investigations were conducted in November 1991 and May 1993. Prior to 1991, no investigation of this unit had reportedly been performed.

Furthermore, subsurface investigations to determine the degree and extent of potential soil contamination, specifically associated with this unit, were performed in August 1996, October and November 1996, March 1997, and June 1997. The investigations are discussed below in chronological order.

Two monitoring wells, NK-MW-06 and NK-MW-17, have been installed in the vicinity of the Outside Storage Area. NK-MW-06 was installed by Haley & Aldrich Inc. (H&A) in October 1991. NK-MW-17 was installed by Metcalf and Eddy, Inc. (M&E) in May 1993. These monitoring wells were installed as part of the investigations of groundwater contamination suspected to be from potential releases associated with the Outside Storage Area. The groundwater sampling locations are shown on Drawing 2.

Supplemental groundwater investigations have also been conducted in the vicinity of the Outside Storage Area since the installation of these monitoring wells. In order to be as comprehensive as possible, presentation of this incidental data is discussed as part of this Unit-Specific Technical Memorandum. A summary of the groundwater samples collected and analyses performed is included in Table 1. Concentrations of constituents detected in groundwater samples from these monitoring wells are presented in Table 4. A complete summary of groundwater sample analytical results with detection limits is presented in Table 5. Detected concentrations at each groundwater sampling location are shown on Drawing 2. For a more detailed account of the

groundwater sampling conducted in this area refer to Technical Memorandum (TM) 3, Groundwater Sampling and Quality.

VOCs were detected in groundwater samples from monitoring well NK-MW-17, but not from NK-MW-06. The VOCs detected in monitoring well NK-MW-17 have included 1,2-dichloroethylene (11DCE) and methyl-tert-butyl ether (MTBE). The VOC with the highest concentration detected has been MTBE with a concentration of 10 micrograms per liter (µg/l). These VOCs were detected in the first round of sampling for monitoring well NK-MW-17 and have not been detected in any of the subsequent sampling rounds. SVOCs and TPH were not detected in the groundwater samples. Additionally, seven metals have been detected in groundwater samples collected from these monitoring wells. The metals include arsenic, barium, chromium, iron, lead, nickel, and zinc. Elevated concentrations for arsenic, lead, and zinc were noted in groundwater samples collected from NK-MW-17.

August 1996 Investigation (Loureiro Engineering Associates, Inc.):

Description: On August 8, 1996, one hand auger soil boring, NK-SB-53, was advanced to refusal within the limits of the storage area by Loureiro Engineering Associates, Inc. (LEA). Refusal occurred at a depth of 6.2 feet. Soil samples were collected from the hand auger borings in 2-foot intervals with the sample being collected from the last 6 inches of the sampling interval. On August 19, 1996, a test pit, NK-TP-02, was advanced with a backhoe to a depth of 9 feet in a soil pile at the southeast portion of the storage area. The test pit and soil sampling locations are shown on Drawing 1. Soil samples were collected from the sidewalls and the bottom of the test pit.

A total of eight soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs, including benzene (BZ), ethylbenzene (EBZ), tetrachloroethylene (PCE), toluene (TL), 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), and xylenes (XYL). Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, one sample from boring NK-SB-53 and two samples from the test pit were submitted to Averill Environmental Laboratory, Inc. (AEL) and analyzed for the presence of VOCs and metals. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the boring log, the soil pile consisted of fine to medium sand with varying amounts of silt containing brick fragments and plastic sheeting. Based on the test pit log, the soil in test pit NK-TP-02 was observed to contain metal piping, wood blocks, glass, and plastic. A strong petroleum odor was noted in test pit NK-TP-02 from 3.5 to 8.7 feet.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each soil sampling location are shown on Drawing 1. Several

10/26/98

VOCs, including PCE and TCE, were detected in the soil sample submitted to the LEA Analytical Laboratory from boring NK-SB-53 at a depth of 2 to 4 feet. PCE and TCE were detected at concentrations of 2J and 3J micrograms per kilogram (µg/kg), respectively. The "J" qualifier indicates that the value is estimated because the concentration was detected below the method detection limit. These VOCs were not detected in the sample from this interval submitted to AEL for analysis. No other VOCs were detected by the LEA Analytical Laboratory.

The only VOC detected in soil samples submitted to AEL was acetone (ACT) at a concentration of 290 µg/kg from test pit NK-TP-02 at a depth of 5.2 feet. No other VOCs were detected for the remaining samples submitted for fixed laboratory analysis. However, PCE was noted as "N1" in boring NK-SB-51 at 2 to 4 feet. The "N1" qualifier indicates that the concentration was above the method detection limit, but below the reportable quantitation limit.

One or more of the metals analyzed were detected in each of the nine soil samples submitted for analysis. These metals include arsenic, barium, chromium, copper, silver, and zinc.

Data Evaluation and Conclusions: The data were compared to the default numeric criteria included in the Connecticut Remediation Standard Regulation (RSR) and the site-wide background soil concentrations for various metals (Fuss & O'Neill, 1994). For a more detailed discussion of background concentrations of metals in soil refer to TM 4, Background Soil Sampling and Analysis. Criteria are established in the RSR based on exposure pathways for various environmental media, including soil and groundwater. The evaluation of the soils data is based on a comparison to the default numeric residential direct exposure criteria (RDEC), the industrial/commercial direct exposure criteria (IDEC), and the GB pollutant mobility criteria (GBPMC) included in the RSR. The evaluation of the groundwater data is based on a comparison to the residential volatilization criteria (RVC), the industrial/commercial volatilization criteria (IVC), and the surface water protection criteria (SWPC) included in the RSR.

The concentrations of the metals detected in the soil samples are typical of background concentrations and are not indicative of a release from this unit. For concentrations of metals detected in soil, no exceedances of the RDEC or the IDEC were noted. For the VOCs detected in soil, no exceedances of the RDEC, the IDEC, or the GBPMC were noted.

Based on the presence of VOCs and the olfactory evidence of petroleum products in test pit NK-TP-02, there is evidence that a release of hazardous constituents may have occurred in the vicinity of this unit. The degree and extent of the release has not been adequately characterized in this area and additional soil and groundwater data were necessary to define the extent of the contamination.

October and November 1996 Investigation (LEA):

Description: On October 30 and 31, 1996, four soil borings, NK-SB-215 through NK-SB-218, were advanced to refusal or a depth of 15 feet in the southeastern corner of the area in the vicinity of a soil pile. The soil sampling locations are shown on Drawing 1. Soil samples were collected from each of the borings in continuous 2-foot intervals to 14 feet, with a one foot interval from 14 to 15 feet. The depth of 15 feet was selected to ensure that sufficient data were collected for comparisons against the direct exposure criteria in the RSR.

On November 1, 1996, three test pits, NK-TP-04 through NK-TP-06, were advanced with a backhoe to a depth of 6 feet within the area. NK-TP-05 was located such that it bisected the test pit NK-TP-02 in an attempt to the confirm the possible presence of petroleum contamination previously identified at that location. The soil sampling locations are shown on Drawing 1. Soil samples were collected from the sidewalls and the bottom of each test pit.

A total of 48 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, two or more samples from each soil boring and test pit, with only one sample from test pit NK-TP-06, were submitted to AEL and analyzed for the presence of VOCs, metals, and TPH. One soil sample from each of test pits NK-TP-04 and NK-TP-05 and boring NK-SB-216 were also submitted for analysis for SVOCs and PCBs. PCBs were included because of anecdotal comments made by facility personnel concerning the potential placement of PCB-contaminated sediments.

In addition, groundwater samples were collected on November 11, 1996 from borings NK-SB-215, NK-SB-217, and NK-SB-218 using Geoprobe® screenpoint groundwater sampling techniques. A groundwater sample was also unsuccessfully attempted from boring NK-SB-216 but was not completed because of insufficient quantities of water. The groundwater samples were collected from borings NK-SB-215, NK-SB-217, and NK-SB-218 at depths below the ground surface of 12 to 14 feet, 6 to 8 feet, and 9.5 to 11.5 feet, respectively. The groundwater samples were submitted to AEL for analysis for VOCs, SVOCs, metals, and TPH. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the boring logs, groundwater was encountered between 5 and at 9 feet in all of the borings. Varved clay was encountered between 10 and 14 feet in the borings. Also noted in the test pit logs was debris, consisting of metal, asphalt, and tile, that was encountered in test pits NK-TP-04 and NK-TP-05. A strong petroleum odor was noted in test pits NK-TP-04 and NK-TP-05 from 1.5 to 6 feet. No visual or olfactory evidence of petroleum contamination or debris was noted in test pit NK-TP-06.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table

3. Detected concentrations at each soil sampling location are shown on Drawing 1. Several VOCs, including PCE and TCE, were detected in the soil samples submitted to the LEA Analytical Laboratory and to AEL. VOCs were detected in the soil samples from boring NK-SB-216. The highest VOC concentration detected in the soil samples was PCE at a concentration of 380 µg/kg in boring NK-SB-216 at a depth of 6 to 8 feet.

One or more of the metals analyzed were detected in each of the soil samples submitted for analysis. These metals include arsenic, barium, chromium, lead, and zinc.

PCBs were not detected in any of the soil samples submitted for analysis. SVOCs were not detected in the soil samples from boring NK-SB-216 or test pits NK-TP-04B and NK-TP-05B. The "B" suffix indicates that the sample was collected from the bottom. However, several SVOCs were noted as "N1" in test pit soil samples NK-TP-04B and NK-TP-05B. The SVOCs noted in sample NK-TP-04B included fluoranthene (FA), fluorene (FLE), phenanthrene (PHN), and pyrene (PYR). The SVOCs noted in sample NK-TP-05B included FA and PYR. The "N1" qualifier indicates that the concentration was above the method detection limit, but below the reportable quantitation limit.

TPH was detected in the soil samples from NK-SB-215, NK-TP-04N, NK-TP-04B, and NK-TP-05E. The highest concentration of TPH detected was 184 milligrams per kilogram (mg/kg) in boring NK-SB-215 at a depth of 4 to 6 feet. For the soil samples collected from the test pits, the highest concentration of TPH detected was 922 mg/kg from test pit NK-TP-04N. TPH was not detected in the remaining soil samples submitted for fixed laboratory analysis.

Concentrations of constituents detected in the groundwater sample are presented in Table 4. A complete summary of groundwater analytical results with detection limits is presented in Table 5. Detected concentrations at each groundwater sampling location are shown on Drawing 2. VOCs and TPH were not detected in the groundwater samples analyzed from borings NK-SB-215, NK-SB-217, and NK-SB-218.

Barium was detected in the groundwater samples from borings NK-SB-215, NK-SB-217, and NK-SB-218 at concentrations of 0.019, 0.030, and 0.017 milligrams per liter (mg/l), respectively. No other metals were detected in the groundwater samples submitted for fixed laboratory analysis. The only SVOC detected in the groundwater samples was bis(2-ethylhexyl)phthalate (DEHP). DEHP was detected in borings NK-SB-217 and NK-SB-218 at concentrations of 1.5U and 1.7U micrograms per liter (µg/l), respectively. However, the "U" qualifier indicates that the constituent was present in the laboratory blank.

Data Evaluation and Conclusions: The data were compared to the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. The concentrations of the metals detected in the soil samples are typical of site-wide background

concentrations. Metals were not detected above the RDEC or the IDEC. For the metals detected in groundwater, no exceedances of the SWPC were noted.

The only soil exceedance of the RSR occurred in soil boring NK-SB-21. The concentration of TPH detected in test pit sample NK-TP-04N was above the RDEC as shown in Table 6. For the VOCs detected in soil, no exceedances of the RDEC, IDEC, or the GBPMC were noted.

Based on the presence of petroleum products in test pits NK-TP-04 and NK-TP-05 and the TPH results, there is evidence that a release of hazardous constituents may have occurred in the vicinity of this unit. The degree and extent of the release has not been adequately characterized in this area and additional soil and groundwater data were necessary to define the extent of the contamination.

March 1997 Investigation (LEA):

Description: During March 1997, nineteen soil borings, NK-SB-272 through NK-SB-290, were advanced to depths between 12 and 16 feet, depending on the depth to clay. The soil sampling locations are shown on Drawing 1. Soil samples were collected from each of the borings in continuous 2-foot intervals to the varved clay.

A total of 137 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, samples from each soil boring were submitted to a fixed laboratory for analysis. Soil and groundwater samples were submitted to Environmental Science Services (ESS) for analysis. Due to data validation issues, analytical results from ESS were deemed unusable for the Airport/Klondike Project. Subsequent to these concerns, ESS analytical results have not been considered within this Unit-Specific Technical Memorandum (USTM).

In addition to the soil samples, groundwater samples were collected from the select borings using Geoprobe® screenpoint groundwater sampling techniques. The groundwater samples were collected from a depth of 11 to 14 feet below the ground surface. These groundwater samples were also submitted to ESS and as a result of the data validation issues the analytical results have not been considered within this USTM.

A limited number of soil samples from the boring locations, including borings NK-SB-286 through NK-SB-290, were submitted to AEL for analysis. The samples were analyzed for the presence of VOCs, SVOCs, and TPH. Not all of these samples were analyzed for all of the aforementioned analytes. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the soil boring logs, groundwater was encountered between 4 to 14 feet in all of the borings. Similarly, varved clay was encountered between 9 and 15 feet in all of the borings. Also based on the boring logs, dark brown staining was detected at the clay interface in borings NK-SB-272 through NK-SB-275. Trace coal and cinders were observed in boring NK-SB-276 from 0 to 8 feet. A petroleum odor was noted in borings NK-SB-277 through NK-SB-280, and NK-SB-284 at the depths of 2 to 8 feet, 8 to 10 feet, 6 to 8 feet, 2 to 10 feet, and 8 to 10 feet, respectively. Bituminous asphalt was noted in borings NK-SB-286, NK-SB-287, and NK-SB-290 at depths of 8 to 10 feet, 6 to 8 feet, and 2 to 4 feet, respectively. Brick fragments were also noted in boring NK-SB-290 within the 2 to 4 foot interval.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Several VOCs, including EBZ, PCE, TCE, and XYL, were detected in the soil samples submitted to the LEA Analytical Laboratory or AEL. VOCs were detected in soil samples collected from the borings NK-SB-272, NK-SB-275, NK-SB-276, NK-SB-280, NK-SB-287, NK-SB-289, and NK-SB-290. The highest VOC concentration detected in the soil samples was XYL at a concentration of 541nc µg/kg in boring NK-SB-280 at a depth of 2 to 4 feet.. The "nc" qualifier indicates that the sample does not confirm to the LEA Analytical Laboratory sampling procedure protocol.

SVOCs were not detected in the two soil samples submitted to AEL for analysis. TPH was detected in the two of the five soil samples submitted to AEL for analysis. TPH was detected in the soil samples from borings NK-SB-286 and NK-SB-287 from a depth of 4 to 6 feet at a concentrations of 171 and 234 mg/kg, respectively.

Data Evaluation and Conclusions: The data were compared to the default numeric criteria included in the RSR. For the VOCs and TPH detected, no exceedances of the RDEC, the IDEC, or the GBPMC were noted.

Based on the presence of TPH and VOCs, there is evidence that a release of a petroleum product may have occurred in the vicinity of this unit. The degree and extent of the release has not been adequately characterized in the vicinity of this unit and additional soil sampling and groundwater sampling were necessary to define the extent of the contamination.

June 1997 Investigation (LEA):

Description: On June 5 through June 12, 1997, nineteen soil borings, NK-SB-310 through NK-SB-314, and NK-SB-319 through NK-SB-332, were advanced to depths between 12 and 16 feet, depending on the depth to clay. These borings were duplicate borings of borings NK-SB-272

10/26/98

through NK-SB-290. The soil sampling locations are shown on Drawing 1. Soil samples were collected from each of the borings in continuous 2-foot intervals to the varved clay.

A total of 137 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, at least two samples from each soil boring were submitted to Quanterra, Inc. (QNT) and analyzed for the presence of VOCs and TPH. Select samples were also analyzed for SVOCs and PCBs.

In addition, groundwater samples were collected from borings NK-SB-311, NK-SB-312, NK-SB-314, NK-SB-319, NK-SB-324, and NK-SB-326 using Geoprobe® screenpoint groundwater sampling techniques. The groundwater samples were collected from all these borings at a depth of 8 to 12 feet below the ground surface. The groundwater samples were submitted to QNT for analysis of VOCs, SVOCs, and TPH. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the boring logs, groundwater was encountered between 4 to 14 feet in all of the borings. Varved clay was encountered at depths ranging from 9 to 15 feet in all of the borings. The geologic boring logs for these duplicate borings, NK-SB-310 through NK-SB-314 and NK-SB-319 through NK-SB-332, possess the similar characteristics and geologic records as the original borings, NK-SB-272 through NK-SB-290.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each soil sampling location are shown on Drawing 1. Several VOCs, including PCE, TCE, methylene chloride (MC), methyl ethyl ketone (MEK), and ACT, were detected in the soil samples submitted to the LEA Analytical Laboratory or to QNT.

VOCs were detected in at least one soil sample from each of the soil borings, but not in all of the soil samples collected from the borings. The highest VOC concentration detected in the soil samples was PCE at a concentration of 106nc μ g/kg in boring NK-SB-327 at a depth of 4 to 6 feet.

2-Methylnaphthalene (B-MLNE) was the only SVOC detected in the soil samples submitted to QNT. The highest B-MLNE concentration detected was detected at a concentration of 2,900 μ g/kg in boring NK-SB-314 at a depth of 2 to 4 feet. No other SVOCs were detected in the soil samples submitted for fixed laboratory analysis. PCB 1260 was detected at a concentration of 61 μ g/kg in boring NK-SB-322 at a depth of 2 to 4 feet.

TPH was detected in the soil samples submitted to QNT from borings NK-SB-286, NK-SB-287 NK-SB-310 through NK-SB-314, NK-SB-319 through NK-SB-326, and NK-SB-328 through

NK-SB-332. The highest TPH concentration detected was at a concentration of 13,000 mg/kg in boring NK-SB-312 at a depth of 4 to 6 feet. Other elevated concentrations of TPH were detected in NK-SB-314, NK-SB-313, NK-SB-322, NK-SB-323, NK-SB-325, and NK-SB-326 with the TPH concentrations ranging from 510 to 11,000 mg/kg.

Concentrations of constituents detected in the groundwater sample are presented in Table 4. A complete summary of groundwater analytical results with detection limits is presented in Table 5. Detected concentrations at each groundwater sampling location are shown on Drawing 2. One VOC was detected in the screenpoint groundwater samples collected and analyzed by QNT. PCE was detected at a concentration of $2.2~\mu g/l$ in boring NK-SB-312 at depth of 8 to 12 feet. No other VOCs or SVOCs were detected in the groundwater samples analyzed by QNT.

TPH was detected at concentrations of 1.1 mg/l, 1.8 mg/l, and 3.5 mg/l in screenpoint groundwater samples collected from NK-SB-311, NK-SB-319, and NK-SB-324, all at depths of 8 to 12 feet. There were no other TPH detections in the groundwater samples analyzed by QNT.

Data Evaluation and Conclusions: The data were compared to the default numeric criteria included in the RSR. For the VOCs and SVOCs detected, no exceedances of the RDEC, the IDEC, or the GBPMC were noted. As for the concentrations of VOCs detected in the groundwater, no exceedances of the RSR were noted.

The ACT and MC, two common laboratory contaminants detected by QNT at estimated concentrations close to the method detection limit, are believed to be laboratory contaminants and are not present at this unit. Similarly, MEK, a less common laboratory contaminant detected only by QNT at estimated concentrations close to the method detection limit, is also believed to be a laboratory contaminant.

The concentrations of TPH detected were above the RDEC in the soil borings NK-SB-310 through NK-SB-314, NK-SB-322 through NK-SB-323, NK-SB-325 and NK-SB-326 at varying depth, ranging from 0 to 10 feet as shown in Table 6. Also, the concentrations of TPH detected in soil borings NK-SB-310 through NK-SB-311 were above the IDEC and the GBPMC.

Soil with contaminant concentrations above the IDEC within four feet of the ground surface is recommended for excavation along with the use of an Environmental Land Use Restriction (ELUR) for soils below four feet to satisfy the criteria for inaccessible soil. Considering the above investigations, the remediation of the area near the soil exceedances, within four feet of the ground surface are scheduled to be remediated as part of the Klondike Soil Removal Project. For a more detailed discussion of the Klondike Soil Removal Project refer to TM 14, Soil Removals. Drawing 1 shows the approximate limits of the proposed excavation.

After these quantities of soil have been removed, confirmational samples of the excavation sidewalls will be collected to confirm the removal of the material. The confirmational samples will be analyzed for VOCs and TPH to confirm that the constituents detected have been removed. For the remaining soil, an ELUR for industrial/commercal use will be placed on the area in order to satisfy the RSR criteria for site use and inaccessible soil. Subsequently, with the soil exceedances removed, this unit will have been adequately characterized and no further investigation will be warranted at this unit.

REFERENCES

Fuss & O'Neill, Inc., 1994, Soil Sampling Background Areas – North Klondike, prepared for Pratt & Whitney.

Haley & Aldrich, Inc., January, 1993, Site-Wide Environmental Monitoring Report, Pratt & Whitney, East Hartford, Connecticut, prepared for Pratt & Whitney.

Keystone Aerial Surveys, Inc. 1965, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc. 1970, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc. 1975, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Loureiro Engineering Associates, August 18, 1995, Rentschler Airport and Klondike Areas Data Gap Investigation and Work Plan, Pratt & Whitney, 400 Main Street, East Hartford, CT.

Metcalf & Eddy, Inc. July 1993, Draft Report - Klondike Area Site Investigation, UTC / Pratt & Whitney Facility, East Hartford, CT, prepared for Pratt & Whitney.

P&W Photographic Services Department, 1969, Aerial Photograph, Negative Number Z-36268, Pratt & Whitney, East Hartford, CT.

P&W Photographic Services Department, 1975, Aerial Photograph, Negative Number CN-50747, Pratt & Whitney, East Hartford, CT.

P&W Photographic Services Department, 1987, Aerial Photograph, Negative Number 87c3277, Pratt & Whitney, East Hartford, CT.

to/20/98

UNIT-SPECIFIC TECHNICAL MEMORANDUM: NK UNDEVELOPED LAND-SOIL PILE

PRATT & WHITNEY, EAST HARTFORD, CT

AREA: North Klondike

SUB-AREA: Undeveloped Land

ENVIRONMENTAL UNIT: Soil Pile

Location: In the North Klondike Area, this unit is located at northern-most portion of the North Klondike, approximately 50 feet east of Perimeter Road (Drawing 1).

Description: A soil pile, that appears to be the result of historic-filling operations, was located at the northern-most portion of the North Klondike Undeveloped Land Area. The soil pile, located toward the southwest of the Undeveloped Land Area, measures approximately 80 feet by 400 feet.

Dates of Operation: Unknown.

Processes: Placement of soil in piles, most likely as part of the historic-filling operations in the Airport/Klondike Area.

Aerial Photographs: Large-scale aerial photographs for 1965, 1970, and 1975 were obtained from Keystone Aerial Surveys Inc. Three smaller-scale aerial photographs for 1969, 1975, and 1987 were obtained from the Pratt & Whitney (P&W) Photographic Services Department.

A review of the 1965 aerial photograph indicates an area, located toward the western side of the Undeveloped Land Area, that is a light-colored area, probably sand, without vegetation. Overall, the remaining photographs show this area unchanged with the trees and sand mostly undisturbed, except for the small photograph from 1987. This 1987 photograph shows that a large portion of the North Klondike Undeveloped Land Area had the trees and vegetation removed. Reportedly, the tree removal was required by the Federal Aviation Administration (FAA).

Specific Contaminants of Concern: The specific contaminants of concern are unknown. In order to be as comprehensive as possible in the investigation that was conducted, the following constituent groups were analyzed for: volatile organic compounds (VOCs) and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nickel, and zinc).

Potential Release Mechanism: Impacts to soils associated with potential spills, leaks, or materials leaching from the soil pile and fill material.

INVESTIGATION AND REMEDIATION ACTIVITIES:

Due to the potential for a release associated with this unit, a subsurface investigation to determine the degree and extent of potential soil contamination was performed in August 1996. This investigation included both soil borings and test pits within the limits of the soil pile. Prior to 1996, no subsurface soil investigations of the soil pile had reportedly been performed.

August 1996 Investigation (Loureiro Engineering Associates, Inc.):

Description: On August 8, 1996, two hand auger soil borings, NK-SB-51 and NK-SB-52, were advanced to a depth of 8 feet within the limits of the soil pile by Loureiro Engineering Associates, Inc. (LEA). Soil samples were collected from the hand auger borings in 2-foot intervals with the sample being collected from the last 6 inches of the sampling interval. On August 19, 1996, test pit NK-TP-01 was advanced with a backhoe to a depth of 9 feet in the soil pile. The test pit and soil sampling locations are shown on Drawing 1. Soil samples were collected from the side walls and the bottom of the test pit.

A total of fourteen soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs, including benzene (BZ), ethylbenzene (EBZ), tetrachloroethylene (PCE), toluene (TL), 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), and xylenes (XYL). Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, two samples from each of the borings and from the test pit were submitted to Averill Environmental Laboratory, Inc. (AEL) for analysis. The six soil samples were analyzed for the presence of VOCs and metals. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the boring logs and the test pit logs, the soil consisted of pale yellow fine sand and a brownish yellow to dark brown sand. Neither groundwater or any debris was encountered in the borings or the test pit. No visual or olfactory evidence of contamination was noted in the boring or test pit logs.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each soil sampling location are shown on Drawing 1. VOCs were not detected in any of the soil samples analyzed by the LEA Analytical Laboratory or AEL. One or more of the metals analyzed were detected in each of the six soil samples submitted for analysis. These metals include barium, chromium, copper, and zinc.

Data Evaluation and Conclusions: The data were compared to the default numeric criteria included in the Connecticut Remediation Standard Regulation (RSR) and the site-wide background soil

10/26/98

concentrations for various metals (Fuss & O'Neill, 1994). For a more detailed discussion of background concentrations of metals in soil refer to *Technical Memorandum 4*, *Background Soil Sampling and Analysis*. Criteria are established in the RSR based on exposure pathways for various environmental media, including soil and groundwater. The evaluation of the soils data is based on a comparison to the default numeric residential direct exposure criteria (RDEC), the industrial/commercial direct exposure criteria (IDEC), and the GB pollutant mobility criteria (GBPMC) included in the RSR.

The concentrations of the metals detected in the soil samples are typical of background concentrations and are not indicative of a release from this unit. For concentrations of metals detected in soil, no exceedances of the RDEC or the IDEC were noted. Based on the results of the laboratory analyses of soil samples, there is no evidence that a release occurred from this unit. This unit is believed to be adequately characterized and no further action is warranted for this unit.

REFERENCES

Fuss & O'Neill, Inc., 1994, Soil Sampling Background Areas – North Klondike, prepared for Pratt & Whitney.

Keystone Aerial Surveys, Inc., 1975, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc., 1970, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc., 1965, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Loureiro Engineering Associates, August 18, 1995, Rentschler Airport and Klondike Areas Data Gap Investigation and Work Plan, Pratt & Whitney, 400 Main Street, East Hartford, CT.

Metcalf & Eddy, Inc. July 1993, Draft Report - Klondike Area Site Investigation, UTC / Pratt & Whitney Facility, East Hartford, CT, prepared for Pratt & Whitney.

P&W Photographic Services Department, 1969, Aerial Photograph, Negative Number Z-36268, Pratt & Whitney, East Hartford, CT.

P&W Photographic Services Department, 1975, Aerial Photograph, Negative Number CN-50747, Pratt & Whitney, East Hartford, CT.

P&W Photographic Services Department, 1987, Aerial Photograph, Negative Number 87c3277, Pratt & Whitney, East Hartford, CT.

```
Subject:
             Updated Agenda for 7/9/98
This an updated agenda, with related updated delivery dates, for the
next scheduled meeting on July 9, 1998.
AGENDA, JULY 9, 1998 (updated 7/6/98)
            - TM-5 (delivered 6/22/98)
TMs:
            - TM-7 (e-mailed Thursday 7/2/98, and delivered 7/6/98)
            - TM-8 - will be presented on 7/9/98 (to be delivered
on or before 7/9/98) %
            - Fire Training Area C (delivered 6/2/98)
USTMS:
            - Linde Drum and Dumpster (delivered 5/15/98) Linde Building (delivered 6/24/98)
            - X-401 Drywell (delivered on 7/1/98)
            - X-415 Drywell (delivered 7/6/98) UL
            - X-415 AST (delivered 7/6/98)
          - Revised/Updated drawing of detects for TM-6
Drawings:
(delivered on 7/1/98)
            - 1993 PCE - plan and cross-section (delivered 6/25/98)
            - 1997 PCE plume drawing - plan and cross-section
(delivered 6/25/98)
            - 1993 and 1997 PCE plume drawing - cross-section
through SK-MW-15i and SK-MW-19 (to be delivered
              on or before 7/9/98)
            - 1993 and 1997 PCE plume drawing - cross-section
through SK-MW-20, SK-MW-5, SK-MW-14i and
               SK-MW-2 (to be delivered on or before 7/9/98).
            - 1993 and 1997 PCE plume drawing - cross-section
through SK-MW-23, SK-MW-21, SK-MW-22 and
               SK-MW-03 (to be delivered on or before 7/9/98)
Additional Tentative Presentation
                  - Section 5
Report:
Please contact me if you have any question or need any type of
information prior to the meeting.
Vanessa Riva
P&W, Group EHS
ph: 860-565-9445
fax: 860-565-9981
> rivavan@pweh.com
```

"Charlton, Troy J." <m114229@ehposrv5.eh.pweh.com>...

"Riva, Vanessa (EXPORT)" <rivavan@pweh.com>

7/6/98 4:34pm

Aaron Gilbert <gilbert.aaron@epamail.epa.gov>, Car...

From:

Date:

CC:

To:

October 14, 1998

US Environmental Protection Agency

JFK Federal Building (HBT) 90 Canal Street Boston, MA 02203-2211

Attn.: Juan Perez

RE: Summary Investigation and Remediation Report - Airport/Klondike Area

Pratt & Whitney, East Hartford, Connecticut

LEA Comm. No. 68V8124

Dear Mr. Perez:

Attached please find six copies of additional information for the above-mentioned report for the Airport/Klondike Area at the Pratt & Whitney facility located at 400 Main Street in East Hartford, Connecticut. The information provided in this package includes the following:

- Table of Contents (Revised)
- Section 3 (New)
- X-430 Stainless Steel Tank (New) Text only

The information identified as "New" has not been previously submitted for review. The information identified above as "Revised" has been modified to incorporate changes in adding Section 3. The USTM should be added to Volume V of the Unit-Specific Technical Memoranda Binders. The Tables and Drawings for this USTM had been shipped via FedEx earlier.

If you have any questions or comments concerning the attached information, please contact me at 860-747-6181.

Sincerely,

LOUREIRO ENGINEERING ASSOCIATES

Thomas J. Salimeno, P.E.

Project Manager

Attachments

October 16, 1998

US Environmental Protection Agency

JFK Federal Building (HBT) 90 Canal Street Boston, MA 02203-2211

Attn.: Juan Perez

RE: Summary Investigation and Remediation Report - Airport/Klondike Area

Pratt & Whitney, East Hartford, Connecticut

LEA Comm. No. 68V8129

Dear Mr. Perez:

Attached please find six copies of additional information for the above-mentioned report for the Airport/Klondike Area at the Pratt & Whitney facility located at 400 Main Street in East Hartford, Connecticut. The information provided in this package includes the following:

- Technical Memorandum. 10 Test Pit Installation and Soil Sampling (New)
- North Klondike Undeveloped Soil Pile (New)
- North Klondike Undeveloped Outside Storage Area (New)
- Former Pickle Company (New)

The information identified as "New" has not been previously submitted for review. The information identified above as "Technical Memorandum 10 Test Pit Installation and Soil Sampling (New)" should be added to Volume III of the Technical Memoranda Binder. The information identified above as "North Klondike Undeveloped - Soil Pile (New)" should be added to Volume V of the Unit-Specific Technical Memoranda Binders. The other USTMs are located in Volume VI of the Unit-Specific Technical Memoranda Binders. For the USTMs, only the Tables and Drawings have been shipped via FedEx. The text will be sent to you via electronic mail.

Please note that the Former Pickle Company USTM is a combination of the underground storage tanks and the soil piles. If you have any questions or comments concerning the attached information, please contact me at 860-747-6181.

Sincerely,

LOUREIRO ENGINEERING ASSOCIATES, INC.

Thomas J. Salimeno, P.E.

Project Manager

Attachments

US EPA New England RCRA Document Management System (RDMS) Image Target Sheet

RDMS Document ID# 1152

Facility Name: PRATT & WHITNEY (MAIN STREET)
Phase Classification: <u>R-9</u>
Document Title: <u>DRAFT</u> , <u>UNIT-SPECIFIC</u> <u>TECHNICAL</u> <u>MEMORANDA</u> , <u>SUMMARY SITE INVESTIGATION AND REMEDIATION REPORT</u> , <u>AIRPORT/KLONDIKE AREA</u> , <u>VOLUME 7 (RELATED DOCUMENTS ARE ATTACHED)</u> [PART 1 OF 4]
Date of Document: 01/01/01
Document Type: <u>REPORT</u>
Purpose of Target Sheet:
[x] Oversized [] Privileged
[] Page(s) Missing [] Other (Please Provide Purpose Below)
Comments:
METALS, PCBS, SVOCS & TPH EXCEEDANCES OF SWPC IN GROUNDWATER SAMPLING LOCATIONS MAP

^{*} Please Contact the EPA New England RCRA Records Center to View This Document *

TECHNICAL MEMORANDUM 7 LOUREIRO ENGINEERING ASSOCIATES ANALYTICAL LABORATORY

SUMMARY SITE INVESTIGATION AND REMEDIATION REPORT AIRPORT/KLONDIKE AREA AT PRATT & WHITNEY EAST HARTFORD, CONNECTICUT EPA ID No. CTD990672081

Prepared for:

PRATT & WHITNEY
400 Main Street
East Hartford, Connecticut 06108

Prepared by:

LOUREIRO ENGINEERING ASSOCIATES
100 Northwest Drive
Plainville, Connecticut 06062

LEA Comm. No. 68V8124

Table of Contents

	Page
1. INTRODUCTION	1-1
1.1 Purpose and Objective	1-1
1.2 Background	1-1
1.3 Scope	1-2
2. METHODOLOGY	2-1
2.1 General Procedures	2-1
2.1.1 Soil Sample Collection	2-2
2.1.2 Groundwater Sample Collection	2-2
2.1.3 Sample Handling and Transport	2-3
2.1.4 Sample Storage	2-3
2.2 Sample Analyses	2-4
2.3 Quality Assurance/Quality Control Procedures	2-4
2.3.1 Field Quality Assurance/Quality Control Procedures	2-5
2.3.2 Laboratory Analytical Quality Assurance/Quality Control Procedures	2-5
2.3.3 Method Detection Limits	2-6
2.3.4 Sensitivity	2-6
2.3.5 Calibration	2-6
2.3.6 Surrogate Standards	2-7
2.4 Decontamination of Materials and Equipment	2-7
2.5 Sample Custody	2-8
2.6 Reporting	2-9
2.7 Waste Management	2-10
3. RESULTS	3-1

TABLES

Table 1 LEA Analytical Laboratory Method Detection Limit Study Results

Table 2 LEA Analytical Laboratory Data Qualifiers

Acronyms

ACC Accutest Laboratories

AEL Averill Environmental Laboratory, Inc.

BZ Benzene

CFR Code of Federal Regulations

DEP State of Connecticut Department of Environmental Protection

DPH State of Connecticut Department of Public Health

EBZ Ethylbenzene

EPA Environmental Protection Agency

F&O Fuss & O'Neill, Inc.
GC Gas Chromatograph
H&A Haley & Aldrich, Inc.
LAN Lancaster Laboratories

LEA Loureiro Engineering Associates, P.C.

M&E Metcalf & Eddy, Inc.
MDL Method Detection Limit

P&W Pratt & Whitney PCE Tetrachloroethylene

PPE Personal Protective Equipment
QA/QC Quality Assurance/Quality Control

QNT Quanterra, Inc.

SOP Standard Operating Procedure

TCA 1,1,1-Trichloroethane TCE Trichloroethylene

TL Toluene

TM Technical Memorandum

USTM Unit-Specific Technical Memorandum

VOA Volatile Organic Analysis

XYL Total Xylenes

1. INTRODUCTION

1.1 Purpose and Objective

This Technical Memorandum (TM) presents the methodology of the operation of the Loureiro Engineering Associates, P. C. (LEA) Analytical Laboratory for soil and groundwater samples collected from the Airport/Klondike Area (Site) of the Pratt & Whitney (P&W) facility located at 400 Main Street (Main Street facility) in the Town of East Hartford, Connecticut.

LEA operates an analytical laboratory to provide screening analytical data that was used to assist in site investigation activities of the Airport/Klondike Area. The laboratory's function was to perform expedited analyses of samples to support the field sampling activities and to aid in the selection of samples that were submitted to fixed off-site laboratories for more comprehensive analysis. The LEA Analytical Laboratory is certified by the Connecticut Department of Public Health (Certification Number PH-0415) and by the Environmental Protection Agency (EPA) (EPA Certification Number CT00911) for analysis of target volatile organic compounds (VOCs) including benzene (BZ), ethylbenzene (EBZ), tetrachloroethylene (PCE), toluene (TL), 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), and total xylenes (XYL).

1.2 Background

The Airport/Klondike Area is located on the eastern portion of the P&W Main Street facility on the east side of the main plant, north of Brewer Street and south of Silver Lane. The Airport/Klondike Area consists of four study areas that include the North and South Airport Areas and the North and South Klondike Areas. During the Site investigation and remediation activities performed by LEA, soil samples collected as part of the contaminant delineation investigations were routinely submitted to the LEA Analytical Laboratory for screening VOCs analyses. Similarly, soil samples collected as part of the Containment Building operation were routinely submitted to the LEA Analytical Laboratory for VOCs analyses to evaluate the operation of the building and the effectiveness of the VOC removal process.

For the investigation activities, the results of these soil analyses were used, in conjunction with other relevant data, including visual, olfactory, or instrument evidence (i.e., photoionization detector, flame ionization detector), and with consideration of the potential release mechanism, to select soil samples for submission to fixed off-site laboratories for additional analytical testing. Soil samples were also submitted to the following laboratories for analysis: Accutest Laboratories (ACC), Averill Environmental Laboratory, Inc. (AEL), Lancaster Laboratories

(LAN), and Quanterra, Inc. (QNT). The LEA analytical results were also used to direct soil boring activities associated with contaminant delineation programs.

In addition, a limited number of groundwater samples (i.e., twelve samples) collected during August through October 1996 were analyzed by the LEA Analytical Laboratory. Of the twelve groundwater samples analyzed by the LEA Analytical Laboratory, nine of the twelve were subsequently submitted to a fixed off-site laboratories for additional analytical testing. In the remaining samples, groundwater samples were submitted to the LEA Analytical Laboratory for screening analysis and the specific samples were not submitted to fixed off-site laboratories for additional analytical testing. Due to the limited number of groundwater samples collected per sampling location in comparison to the relative large number of soil samples collected per sampling location, the vast majority of groundwater samples were submitted to the fixed off-site laboratories for analysis.

1.3 Scope

This TM covers the techniques and methodologies used for the analysis and reporting of data generated by the LEA Analytical Laboratory. The methods and techniques discussed are those used by the LEA Analytical Laboratory during the period from approximately 1995 through 1998. However, this TM does not cover the results of specific chemical analyses of soil samples collected during the investigation and remediation activities as these data are discussed in the appropriate Unit-Specific Technical Memorandum (USTM).

2. METHODOLOGY

This section presents the methods and techniques used to collect, transport, and analyze the soil and groundwater samples submitted to the LEA Analytical Laboratory. This section includes relevant information that has also been presented in *TM 1 Monitoring Well Installation and Development and Soil Sampling* and *TM 5 Soil Boring Installation and Soil Sampling*.

2.1 General Procedures

This section describes the general procedures and methodologies used to collect and analyze soil and groundwater samples submitted to the LEA Analytical Laboratory. Soil samples were collected during the installation of monitoring wells and soil borings throughout the Airport/Klondike Area. The soil borings and monitoring wells installed during the most recent investigation activities were installed in general accordance with the procedures described in LEA Standard Operating Procedure for Geoprobe® Probing and Sampling, the LEA SOP Standard Operating Procedure for Geologic Logging of Unconsolidated Sedimentary Materials, the LEA SOP Standard Operating Procedure for Monitoring Well Installation, and the LEA SOP Standard Operating Procedure for Monitoring Well Installation, and the monitoring well installation and the soil boring installation are included in TM 1 Monitoring Well Installation and Development and Soil Sampling and TM 5 Soil Boring Installation and Soil Sampling, respectively.

Groundwater samples were collected by using Geoprobe[®] screenpoint groundwater sampling techniques during the installation of soil borings throughout the Airport/Klondike Area. The groundwater samples were collected in general accordance with the LEA SOP *Liquid Sample Collection and Field Analysis*. More specific details on the groundwater sampling are included in *TM 3 Groundwater Sampling and Quality*.

Samples were collected for analysis at the LEA Analytical Laboratory for target VOCs, including BZ, EBZ, PCE, TL, TCA, TCE, and XYL. The LEA Analytical Laboratory is capable of operating as a mobile laboratory at the site being investigated. However, due to the proximity of the Site in East Hartford and the LEA office in Plainville, the LEA Analytical Laboratory was operated as a fixed laboratory and samples were delivered to the laboratory daily.

2.1.1 Soil Sample Collection

Soil samples were collected by using standard hollow-stem auger with split-spoon samplers, the LEA Geoprobe[®] direct-push techniques with Geoprobe[®] Macro-Core[®] soil sampling equipment, or by hand-auger/trowel. Soil sampling and collection methodologies are discussed in more detail in *TM 1 Monitoring Well Installation and Development and Soil Sampling* and *TM 5 Soil Boring Installation and Soil Sampling*.

Immediately after collection, the soil sampler was opened and an aliquot of the soil was collected, via a stainless-steel spatula, into a 40-milliliter vial a Teflon[®] septum. Prior to filling, an analytical balance was tared against the weight of the vial. Approximately 5 grams of soil was placed into the vial and the mass of soil was recorded to the nearest 0.1 gram. Between 4.0 and 6.0 grams of soil was considered an acceptable range for the mass of soil collected. Calibration of the analytical balance used in the field for sample collection is part of the LEA Analytical Laboratory protocols and was performed daily in accordance with the requirements of the laboratory certification.

After the mass of soil placed into the vial was determined, the vials were filled with preacidified, laboratory-supplied water to a volume of 30-milliliters. The volume of sampling water added was regulated by placing the vials with the soil into a specifically-sized plastic or wooden block and filling the vial until the liquid level in the vial was level with the top of the block. After the proper volume of sampling water was placed into the vial, the vials were immediately capped to prevent the loss of volatiles. All vials were placed septum-down were placed into iced sample coolers for the remainder of the sampling day.

2.1.2 Groundwater Sample Collection

Groundwater samples were collected in general accordance with the procedures presented in LEA SOP Geoprobe[®] Screen Point Groundwater Sampling. The groundwater sampling and collection methodologies are discussed in more detail in TM 3 Groundwater Sampling and Quality.

After the screenpoint sampler was driven to the desired depth, the drive sheath was retracted and the screen was exposed. Groundwater samples were collected using disposable polyethylene tubing and a low-flow peristaltic pumps directly into vials equipped with a Teflon[®] septum. During sample collection, these vials were placed into the specifically-sized plastic or wooden block and the vials were filled until the liquid level in the vial was level with the top of the block. After the proper volume of groundwater was placed into the vial, the vials were immediately

capped to prevent the loss of volatiles. All vials were placed septum-down were placed into iced sample coolers for the remainder of the sampling day.

2.1.3 Sample Handling and Transport

Immediately after collection, filled vials were labeled and transferred to iced sample coolers. The vials were placed, septum down, into foam inserts in the coolers to prevent breakage and minimize agitation of the vials during subsequent handling and transportation. Samples destined for the LEA Analytical Laboratory were kept in a separate cooler from samples destined for shipment to an off-site fixed laboratory. A laboratory-supplied trip blank, as discussed in Section 2.3 was also included in each sample cooler.

Soil samples were collected for the purpose of characterizing the nature and delineating the extent of contamination at the Site. Samples were maintained under appropriate chain-of-custody control from the time the samples were collected until they were analyzed. Chain-of-custody procedures were used to maintain and document sample possession from collection through analysis. The following documents identified samples and documented possession:

- Sample labels
- Chain-of-Custody record forms
- Field record forms.

The field sampler was responsible for the care and custody of the samples collected until they were delivered to the laboratories under the chain-of-custody procedures. Samples collected for the LEA Analytical Laboratory were maintained under separate chain-of-custody than samples destined for shipment to off-site laboratories. With the proximity of the LEA Analytical Laboratory and the Site, samples collected for analysis at the LEA Analytical Laboratory were transported directly to the analytical laboratory at the end of each sampling day.

2.1.4 Sample Storage

Samples were transported to the LEA Analytical Laboratory at the end of each work day. After transport to the LEA Analytical Laboratory, samples were relinquished to the custody of the laboratory personnel or to a locked, dedicated laboratory refrigerator. At the time the samples were relinquished, the original LEA Chain-of-Custody form was signed over to the receiving party, either the laboratory personnel or the laboratory refrigerator.

As part of the LEA Analytical Laboratory protocols, the temperature of the sample storage refrigerator is maintained at approximately 4°C and a temperature record is maintained as part of the laboratory quality assurance/quality control procedures.

2.2 Sample Analyses

Samples collected during the Site investigation were typically analyzed within 24 to 48 hours after collection. Samples were analyzed using modified EPA Method 3810 - Static Headspace Analysis. This method involved measuring the concentration of target analytes in the headspace over a water or soil-in-water sample and relating that concentration back to the concentration in the original sample.

Soil and groundwater samples were prepared for analysis by first bringing the sample to ambient temperature, then agitating the sample for two minutes by mechanical agitation. After the samples were agitated, they were placed in a constant temperature water bath at approximately 90° F (32°C) for a minimum of 2 minutes.

After the samples had been allowed to equilibrate in the constant temperature water bath, headspace samples for analysis were withdrawn from the vial. The exact volume of headspace withdrawn was analyst-determined and was dependent upon the degree of contamination present, as indicated by the field headspace measurements provided by the field crews, the instrument operating conditions, and the type and condition of the detector lamp installed in the instrument.

This analysis was implemented by gas chromatographic (GC) separation of the contaminants on a Photovac[®] 10S50 gas chromatograph using a Photovac[®] CPSil 5 capillary column and a 10.6eV photoionization detector. Analyte identification was by comparison of retention times between standards and unknowns.

Analytical measurements and sample parameters were entered directly into the LEA database to perform the necessary calculations to convert the measured headspace concentrations to soil or groundwater concentrations. The calculation methods correct for the sample weight, injection volume, and sample matrix.

2.3 Quality Assurance/Quality Control Procedures

Quality assurance/quality control (QA/QC) may be grouped into field QA/QC procedures and laboratory QA/QC procedures. Both types of QA/QC are incorporated into the LEA Analytical Laboratory operations protocols.

2.3.1 Field Quality Assurance/Quality Control Procedures

Field QA/QC procedures are used to confirm the reliability and validity of the field data gathered during the course of the investigations. Trip blanks are the field QA/QC sample specifically incorporated into the protocol of the LEA Analytical Laboratory. Trip blanks were used to provide a measurement of cross-contamination by VOCs and are incorporated into the LEA Analytical Laboratory protocols. Trip blanks were collected each day for which samples were collected for analysis at the LEA Analytical Laboratory for the presence of VOCs. Trip blanks were analyzed at an approximate rate of one trip blank sample per day. Because in most cases it was possible to store all of the samples collected for the LEA Analytical Laboratory during any given sample day in a single cooler, one trip blank was deemed sufficient.

Additional field QA/QC procedures, including duplicate samples, replicate samples, and equipment blanks are not incorporated into the LEA Analytical Laboratory QA/QC protocols because these samples are not generated by the LEA Analytical Laboratory.

2.3.2 Laboratory Analytical Quality Assurance/Quality Control Procedures

Laboratory QA/QC procedures involve the preparation of calibration standards, instrument calibration, analysis of syringe and instrument blanks, surrogate standard spiking, and analysis of laboratory duplicate samples. Laboratory QA/QC procedures were conducted in general accordance with the procedures discussed in the LEA SOP Standard Operating Procedure for Modified EPA Method 3810 Static Headspace Analysis of Volatile Organic Compounds Using the Photovac® 10S50 Gas Chromatograph.

Calibration standards were typically prepared by secondary dilution of stock standard solutions purchased directly from laboratory chemical suppliers. Calibration standards were prepared by diluting a known volume of the stock standard solution in a volumetric flask, filling an unused 40 milliliter vial with the calibration solution, and removing 10 milliliters of the solution while simultaneously allowing air to enter the vial. The calibration solution was then treated as a typical sample prior to the analysis, including warming the container in the water bath and agitating the sample for 2 minutes prior to withdrawing a vapor sample for analysis.

Continuing calibration checks were performed daily to ensure that the analytical precision remained within plus or minus twenty percent of the true value. Instrument and syringe blanks were performed at least once per day to ensure the adequacy of the syringe decontamination and the effectiveness of purging on the GC's column. Instrument and syringe blanks were collected and analyzed each day before any samples were analyzed to ensure that the instrument and

syringe(s) were initially clean. Additional instrument and syringe blanks were collected at the discretion of the analyst to verify that the instrument and syringe(s) were free of contaminants.

Laboratory duplicate samples were analyzed to assess analytical precision. Precision is a measurement of the agreement of replicate measurements without reference to a known or assumed value. Laboratory duplicate analyses were performed once per twenty field samples per sample matrix, or once per sample set, whichever was greater.

2.3.3 Method Detection Limits

Method detection limit (MDL) studies have been conducted for the LEA Analytical Laboratory on an approximately annual basis since 1994, prior to beginning the Airport/Klondike Area investigations. The MDL was defined as the concentration of a particular compound which could be consistently quantified within the limits of the required precision and accuracy. MDL studies have been conducted according to the procedures specified in Title 40 of the Code of Federal Regulations Part 136 (40 CFR 136) Appendix B. The target compound MDLs have been established at 5 micrograms per liter (μg/L) for all compounds except TCA for which the MDL was established as 65 μg/L. A summary of the MDL study results for the compounds analyzed by the LEA Analytical Laboratory for the Airport/Klondike Area Project is presented in Table 1.

2.3.4 Sensitivity

Sensitivity was the measure of the limits on analytical detection and quantitation. Sensitivity referred to the minimum amount of each analyte that could be detected and reported with a high degree of confidence and to the minimum concentration that could be reported quantitatively within the precision and accuracy requirements of the analytical standard operating procedure. Sensitivity could be affected by contamination and the performance of the instruments. The MDL was the minimum concentration of an analyte that could be identified, measured, and reported with a 99 percent confidence level that the analyte concentration was greater than zero. The MDL was the amount that could be consistently quantified within the requirements for precision and accuracy.

2.3.5 Calibration

Initial calibrations were performed with five-point standard calibration curves covering the range of approximately 5 μ g/L to 100 μ g/L. Continuing calibration checks were performed once per day to determine if the initial calibration was still applicable. Continuing calibration check

samples consisted of the analysis of a parameter which represented, at a minimum, an intermediate concentration and retention time. PCE was the most frequently used parameter.

2.3.6 Surrogate Standards

Surrogate standards are compounds, not included in the target compound list, which are added to a sample at known concentrations and for which an analysis is conducted. The purpose of the added surrogate compounds is to provide a measure of the ability of the analytical procedure to recover contaminants from the specific sample matrix. Surrogate compounds are selected to be as chemically similar to the target compounds as possible, while remaining easily identifiable by the analytical procedure. The LEA Analytical Laboratory uses a solution of monochlorobenzene in methanol as a surrogate for groundwater and soil samples.

The criteria established for acceptable surrogate recovery was between 80 and 120 percent of the material introduced into the sample. Recoveries greater than 120 percent were indicators of mechanical problems with the GC, inaccurate sample volumes, or the presence of monochlorobenzene in the sample. Sample recoveries less than 80 percent were indicators of mechanical problems with the GC, inaccurate sample volumes, or matrix interference effects.

In the case of sample recoveries less than 70 percent, the standard operating procedures called for an additional aliquot of the soil sample to be re-extracted using methanol to enhance sample recovery and reanalyzed. Sample results from methanol extractions were flagged with an "M" to indicate the use of methanol. However, no samples were extracted with methanol for the Airport/Klondike Area Project.

2.4 Decontamination of Materials and Equipment

The purpose of consistent decontamination procedures is to prevent the potential spread of contamination between samples and laboratory equipment and from the immediate work area in the laboratory. Sampling equipment decontamination is discussed in more detail in TM 1 Monitoring Well Installation and Development and Soil Sampling and TM 5 Soil Boring Installation and Soil Sampling.

Laboratory equipment used in sample analyses included syringes, water baths, glassware dedicated to standard preparation, gas chromatograph, and sample agitators. In general, water baths and sample agitators do not come in contact with samples and, therefore, are not decontaminated.

Laboratory glassware was decontaminated using the following procedure:

- Fill sink with tap water. Add Alconox® laboratory detergent.
- Wash glassware thoroughly in soap and water.
- Soak glassware overnight in soap and water in the sink.
- In the morning, rinse glassware thoroughly with tap water.
- Rinse glassware three times with 10 percent hydrochloric acid solution.
- Rinse glassware three times with distilled water.
- Rinse glassware three times with methanol.
- Place glassware in 80° C oven for one hour.

Laboratory syringes were decontaminated using three specially prepared methanol rinse solutions using the following procedure:

- Remove the metal plunger and gently wipe with a cleaning tissue.
- Flush the re-assembled syringe with methanol from Methanol Rinse #1.
- Remove the metal plunger and gently wipe with a cleaning tissue.
- Flush the re-assembled syringe with methanol from Methanol Rinse #2.
- Remove the metal plunger and gently wipe with a cleaning tissue.
- Flush the re-assembled syringe with methanol from Methanol Rinse #3.
- Air dry the syringe, or oven dry the disassembled syringe in a 50° C, or less, oven.

The GC column was not directly decontaminated. During the normal operation of the GC, the contaminants injected from a sample are eventually flushed through the column through the combined effects of the column temperature and the carrier gas. The analytical method in use was designed to extract only the volatile compounds from the samples, because the heavier semivolatile compounds would not effectively vaporize under the sample preparation conditions used. Therefore the column could be effectively flushed through relatively short purge times.

2.5 Sample Custody

LEA Analytical Laboratory personnel carried out various procedures for documenting sample custody. Sample custody was documented on the LEA Internal Chain of Custody forms which accompanied each sample group. The following procedures were used to provide accurate documentation of custody:

- The sample shipments were checked against the accompanying chain-of-custody forms. If discrepancies were noted, the field activities coordinator and/or the project manager was contacted and issues were resolved appropriately. One copy of the chain-of-custody form was retained by the laboratory.
- The sample containers were inspected for conditions that would compromise the integrity of the sample. The majority of the samples were received in good condition. Occasionally 40 milliliter vials were received with less than 30 milliliters of soil and water, creating too much headspace. The contents of the sample with an inadequate volume were analyzed as a normal soil sample. However, the non-conforming conditions were noted on the laboratory report generated for the sample. Because these samples were used as screening data, some amount of latitude was allowed in the volume of sample required before the data were rejected. Typically, a volume of 30 milliliters plus or minus 2.5 milliliters was considered acceptable. Results from samples with too much headspace were flagged "R2" to indicate that these data were rejected due to non-conforming sample collection procedures.
- The samples were assigned laboratory identification numbers. The identification numbers were used on work and data sheets, instrument-output reports, and sample results reports. Tracking was sufficiently documented to permit reconstruction of the data trail.
- The security of samples and standards was maintained by storing the samples in the laboratory's sample refrigerator and by locking the room when the laboratory was not occupied.

After the final laboratory report was generated, all documents relating to sample custody were archived.

2.6 Reporting

The laboratory manager reviewed the analytical data before sample results were released. Analytical results that were lower than the MDL and were not detected were flagged as not detected at the MDL, for example, a soil sample with no detectable concentration of PCE was reported as "ND<5." Analytical results that were lower than the MDL, but were detected, were flagged with a "J" to indicate that these values were estimated. Analytical results that were

above the MDL and met the QA/QC criteria established by the LEA Analytical Laboratory were reported without qualifiers. Analytical results that were outside the calibration range were flagged with an "E" to indicate that these values were estimated.

Analytical results which were rejected were qualified with one of the "R" qualifiers. Results that could not be qualified due to co-elution of numerous unidentified peaks were flagged with an "R1." indicating that the data were rejected. Analytical data from samples with an improper amount of headspace or with otherwise non-conforming characteristics were flagged with an "R2" qualifier. Results which were unusable due to laboratory errors were flagged with an "R3" qualifier. Other data qualifiers, including those indicating methanol extractions, are presented in Table 2.

After the analyses were performed, the laboratory reports were generated in both hard copy and electronic formats. Analytical results were electronically transferred to the sample database of all analytical data. Incremental computer backups were performed daily, and a full system backup was performed weekly. A complete set of electronic data was archived in a separate location from the paper copy laboratory reports to further protect against loss.

The raw data were retained by the laboratory, in the possession of the analyst, for the duration of the field investigation. Copies of the draft daily summaries of analytical results were made available to the field activities coordinator and the project manager for review.

2.7 Waste Management

In general, laboratory wastes generated by the LEA Analytical Laboratory consist of the spent samples, waste standards, and miscellaneous waste laboratory products. Waste standard solutions and the miscellaneous wastes were disposed of by the LEA Analytical Laboratory in on-site storage containers and periodically disposed of through outside vendors.

Waste samples were stored under proper custody procedures until the analytical results were verified, and then were relinquished to a storage area. Periodically, waste samples were returned to P&W and drummed in accordance with proper waste management procedures into P&W-supplied drums. Waste samples were disposed of by P&W as appropriate.

3. RESULTS

For the Airport/Klondike Area Project, approximately 5,128 soil samples and 12 groundwater samples were analyzed by the LEA Analytical Laboratory. The majority of theses samples were analyzed within 24 to 48 hours after collection. None of these samples were extracted with methanol. Analytical results for these samples are presented in the appropriate Unit Specific Technical Memoranda (USTMs).

For the investigation activities, the results of these soil analyses were used, in conjunction with other relevant data, including visual, olfactory, or instrument evidence (i.e., photoionization detector, flame ionization detector), and with consideration of the potential release mechanism, to select soil samples for submission to fixed off-site laboratories for additional analytical testing.

TABLES

Table 1 LEA Analytical Laboratory Method Detection Limit Study Results Airport/Klondike Area, Pratt & Whitney, East Hartford, Connecticut

1		,	~ ,	,	
Compound	Units	10/18/94 ^a	5/11/95	3/5/96	6/1/98 ^b
Benzene	μg/L	Not Performed	5	5	1/2
Toluene	μg/L	Not Performed	5	5	2/2
Ethylbenzene	μg/L	Not Performed	5	5	2/2
Total Xylenes	μg/L	Not Performed	5	5	Not Performed
m- and p- Xylene	μg/L	Not Performed	Not Performed	Not Performed	1/3
o-Xylene	μg/L	Not Performed	Not Performed	Not Performed	2/2
Chlorobenzene	μg/L	Not Performed	Not Performed	Not Performed	1/2
Tetrachloroethylene	μg/L	4	5	5	1/2
1,1,1-Trichloroethane	μg/L	11	65	65	20 / 20
Trichloroethylene	μg/L	3	5	5	2/2

^a Note the detector for this period was an 11.7eV lamp.

^b Reported values are for instrument gains of 20 and 10, respectively.

	Table 2
	LEA Analytical Laboratory Data Qualifiers
	Airport/Klondike Area, Pratt & Whitney, East Hartford, Connecticut
Qualifier	Explanation
ND	Non detected; less than default detection limit.
NA	Compound not analyzed.
J	Estimated value. Compound present at a concentration below the method detection limit.
E	Estimated value. Concentration outside calibration range.
*	Daily control sample outside acceptable limits (± 20%).
R	Reject data.
R1	Reject data. Compound may or may not be present. Determination cannot be made due
	to the presence of numerous unidentifiable peaks.
R2	Reject data. Sample does not conform with standard sample collection protocol.
R3	Reject data. Laboratory error.
U	None-detected; qualified due to the presence of compound in the blank.
В	Compound detected in blank.
M	Soil sample extracted with methanol.
I	Interference due to coelution of peaks.
Q	Data to be used qualitatively only.

UNIT-SPECIFIC TECHNICAL MEMORANDUM: X-401 DRY WELLS PRATT & WHITNEY, EAST HARTFORD, CT

AREA: North Klondike

SUB-AREA: X-401

ENVIRONMENTAL UNIT: X-401 Dry Wells

Location: This unit is located in the North Klondike Area off of the first road north of the North Access Road. Three dry wells are located within this unit. One is located to the northeast of the Equipment Shed. The second dry well is located between the Equipment Shed and the Test Stand building. The third dry well is located immediately north of the Pavilion (Drawing 1).

Description: Three dry wells were present in the X-401 Area. The locations of two of the three dry wells are shown on a utility plan map (Petersen and Hoffman, 1962). Recent observations indicated that two of the dry wells consisted of a 55-gallon drum with the top and bottom removed. The drums were placed upright in the ground with the top even with the ground surface. The interior of the dry wells were empty, except for a layer of two- to three-inch traprock at the bottom. It appeared that the traprock was placed in the bottom to aid infiltration. One dry well was located between the Equipment Shed and the Test Stand building and has been referred to as the Middle dry well. Another dry well was located immediately north of the Pavilion and has been referred to as the South dry well.

The third dry well consisted of a steel cylinder that was located inside of a small fenced area. A "drip tray" was apparently used for collecting fluids and directing it to the dry well. It seems that fluids, possibly fuels, flowed down the stainless steel channel (i.e. "drip tray") that leads from the fence into the dry well. This dry well is located to the northeast of the Equipment Shed and has been referred to as the North dry well.

Dates of Operation: Approximately 1957 to 1993. The X-401 Test Stand was built in 1957 and remained in place until it was demolished in the early 1990's.

Processes: Liquids were poured into the dry wells and allowed to infiltrate into the subsurface.

Aerial Photographs: Large-scale aerial photographs for 1965, 1970, and 1975 were obtained from Keystone Aerial Surveys Inc. Two smaller aerial photographs were obtained from the Pratt & Whitney (P&W) Photographic Services Department.

All of the large scale photographs portray the X-401 Area in which the dry wells are located, but the resolution of the photographs are not detailed enough to identify the dry wells. Similar observations occur with the smaller aerial photographs obtained from the P&W Photographic Services Department. All of these aerial photographs indicate that the X-401 Test Stand was existing from at least the date of the earliest photograph, 1965.

Specific Contaminants of Concern: Specific contaminants of concern are flammable and combustible materials including jet fuels, gasoline, waste oil, and solvents. In order to be as comprehensive as possible in the investigation that was conducted, the following constituent

groups were analyzed for: volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nickel, and zinc).

Potential Release Mechanism: Impacts to soils and groundwater associated with the infiltration of liquids placed into the dry wells.

INVESTIGATION AND REMEDIATION ACTIVITIES:

Due to the potential for releases associated with the X-401 Area, various historical investigations have been conducted within this area. Historical investigations for the X-401 Area were conducted in March 1990. Although not conducted specifically for the dry wells, this incidental investigation has generated analytical data in the immediate vicinity of the dry wells.

Due to the potential for releases from the dry wells, subsurface investigations to determine the degree and extent of potential soil contamination, specifically associated with the dry wells, were performed in January 1993, July 1996, and October 1996. Prior to 1990, no investigation of this unit had reportedly been performed. The dry wells were removed in April 1997. The investigations and the remediation are discussed below in chronological order.

During February 1990, monitoring well NK-MW-11 was installed in the vicinity of the X-401 Area to the west of the dry wells. This monitoring well was installed during the Preliminary Reconnaissance Survey of the Airport/Klondike Area by Westinghouse Environmental and Geotechnical Services, Inc. (Westinghouse, 1990). During July 1996, monitoring well NK-MW-19 was installed in the vicinity of the dry wells by Loureiro Engineering Associates, P.C. (LEA). These monitoring well locations are shown on Drawing 1. This monitoring well was installed as part of an investigation of possible groundwater contamination emanating from the dry wells.

During the installation of monitoring well NK-MW-19, soil samples were collected for laboratory analysis and the results are discussed as part of the July 1996 investigation. Supplemental groundwater investigations have been conducted in the vicinity of this unit since the installation of the monitoring well. In order to be as comprehensive as possible, presentation of this incidental groundwater data is discussed as part of this Unit-Specific Technical Memorandum.

Toluene (TL) has been the only VOC detected in the groundwater samples from monitoring well NK-MW-11. Zinc has been the only metal that was detected in groundwater samples collected from monitoring well NK-MW-11. No elevated concentrations of VOCs or metals were detected in the groundwater samples from this monitoring well. A summary of the groundwater samples collected and analyses performed is included in Table 1.

VOCs and TPH have not been detected in groundwater samples from monitoring well NK-MW-19. However, five metals have been detected in the groundwater samples collected from monitoring well NK-MW-19. These metals include barium, chromium, lead, nickel, and zinc. For a more detailed account of the groundwater sampling conducted in this area refer to Technical Memorandum (TM) 3, Groundwater Sampling and Quality.

1993 Investigation (Metcalf & Eddy, Inc.):

Description: During a Metcalf & Eddy, Inc. (M&E) 1993 investigation three surface soil samples, NK-SS-01 through NK-SS-03, were collected in this unit. A duplicate sample was also taken from NK-SS-03. The soil samples were analyzed for VOCs, SVOCs, select metals (nickel, selenium, silver, and zinc), and PCBs. The metals were also analyzed by the toxicity characteristic leaching procedure (TCLP).

During the same M&E 1993 investigation, ten Geoprobe® temporary polyvinyl chloride (PVC) wells were also installed and subsequent groundwater sampling was conducted at each location. Groundwater samples were collected from NK-GP-01 through NK-GP-04, NK-GP-08 through NK-GP-11, and NK-GP-22 through NK-GP-23. All of these groundwater samples were analyzed for VOCs on a portable gas chromatograph (GC). The sampling locations are shown on Drawing 1. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of sample analytical results with detection limits is presented in Table 3. Detected concentrations at each sampling location are shown on Drawing 1. Acetone (ACT) and tetrachloroethylene (PCE) were the only VOCs detected in the soil samples NK-SS-01. The highest VOC detected was PCE at a concentration of 33 micrograms per kilogram (μ g/kg). VOCs were not detected in the remaining three soil samples analyzed.

SVOCs were not detected in the four soil samples analyzed from the dry wells. PCBs were detected in NK-SS-03 and in the duplicate sample, NK-SS-03D, from the same location. The highest PCB concentration detected was 73 μ g/kg. No other PCBs were detected in the samples that were analyzed.

One or more of the metals analyzed were detected in each of the four soil samples submitted for mass analysis. In addition, cadmium, lead, nickel, and zinc were detected in one or more of the four soil samples submitted for TCLP metals analysis.

Concentrations of constituents detected in groundwater samples collected for this unit are presented in Table 4. A complete summary of groundwater sample analytical results with detection limits is presented in Table 5. Detected concentrations at each sampling location are shown on Drawing 2. Benzene (BZ) was detected in the groundwater samples from NK-GP-02 and NK-GP-03. TL was detected in the groundwater sample from NK-GP-01. The highest VOC concentration detected was 255.4 micrograms per liter (µg/l) of BZ in the groundwater sample collected from NK-GP-03. No other VOCs were detected in the remaining groundwater samples that were analyzed. Additionally, varying degrees of weathered hydrocarbons were identified in the groundwater samples from NK-GP-01, NK-GP-02, NK-GP-03, NK-GP-08, NK-GP-09, and NK-GP-11.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the Connecticut Remediation Standard Regulation (RSR) and the site-wide background soil concentrations for various metals. For a more detailed discussion of background concentrations of metals in soil refer to *TM 4*, *Background Soil Sampling and Analysis*. Criteria

are established in the RSR based on exposure pathways for various environmental media, including soil and groundwater. The evaluation of the soils data is based on a comparison to the residential direct exposure criteria (RDEC), the industrial/commercial direct exposure criteria (IDEC), and the GB pollutant mobility criteria (GBPMC) included in the RSR. Groundwater data from the Geoprobe® screenpoint samples were compared to the default numeric surface water protection criteria (SWPC), the residential volatilization criteria (RVC), and the industrial/commercial volatilization criteria (IVC) included in the RSR.

Cadmium, chromium, lead, nickel, silver, and zinc concentrations in the soil sample from NK-SS-02 were detected at concentrations above site-wide background soil concentrations. Zinc concentrations in NK-SS-03 and NK-SS-03D were also detected above site-wide background soil concentrations. The lead concentrations detected in the soil sample from NK-SS-02 were above the default numeric RDEC and GBPMC. The lead concentration detected in the soil sample from NK-SS-01 was also above the default numeric GBPMC. Soil exceedances of the of the RDEC and the GBPMC are shown in Table 7 and Table 9, respectively.

For the VOCs detected in the groundwater samples, no exceedances of the SWPC or the IVC were noted. BZ was detected in NK-GP-03 above the default numeric RVC. Exceedances of the RVC are shown in Table 10.

With respect to the evidence of soil contamination from inside the dry wells and groundwater in the vicinity of the dry wells (based on analytical results), additional soil and groundwater data were necessary to define the degree and extent of the contamination. Soils data were to be collected through the installation of additional borings to the depth of the top of the clay. Groundwater data were to be collected through the installation of Geoprobe® screenpoint groundwater samples and monitoring wells.

July 1996 Investigation (Loureiro Engineering Associates, P. C.):

Description: On July 16, 17, 19, and 22, 1996, nine Geoprobe[®] soil borings, NK-SB-30 through NK-SB-32 and NK-SB-36 through NK-SB-41, and one monitoring well, NK-MW-19, were advanced in the vicinity of the three dry wells by Loureiro Engineering Associates, P.C. (LEA). The sampling locations are shown on Drawing 1. Soil samples were collected from each of the borings in continuous 2-foot intervals to 14 feet, with a one foot interval from 14 to 15 feet. The depth of 15 feet was selected to ensure that sufficient data were collected for comparisons against the direct exposure criteria in the RSR. Soil samples were collected from monitoring well NK-MW-19 in the same manner as the soil borings, when the well was installed on July 18, 1996. A summary of the samples collected and analyses performed is included in Table 1.

A total of 81 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs (BZ, ethylbenzene (EBZ), PCE, TL, 1,1,1-trichloroethane (TCA), trichloroethylene (TCE), and xylenes (XYL). Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, two samples from each boring were submitted to Averill Environmental Laboratory, Inc. (AEL) for analysis. The samples were analyzed for the presence of VOCs, SVOCs, metals, and TPH.

In addition, a groundwater sample was collected from boring NK-SB-39 using Geoprobe®

screenpoint groundwater sampling techniques. The groundwater sample was collected from a depth of five to seven feet below the ground surface. The groundwater sample was submitted to AEL for analysis for VOCs, SVOCs, metals, and TPH.

Investigation Results: Based on the geologic boring logs, groundwater was encountered at varying depths at the sampling locations, ranging from 2.5 to 4.5 feet. Varved clay was encountered at varying depths, ranging from approximately 9.5 feet to 11 feet in the soil borings. Olfactory evidence of contamination was noted on the boring log for NK-SB-32 at a depth of 2 to 4 feet.

Concentrations of constituents detected in the soil samples are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each sampling location are shown on Drawing 1. Several VOCs were detected in the soil samples submitted to the LEA Analytical Laboratory from borings NK-SB-36 and NK-SB-38 through NK-SB-41. VOCs detected in these borings include TCE and EBZ. The highest VOC detect was TCE at a concentration of 1830E μ g/kg in boring NK-SB-38 at a depth of 10 to 12 feet. The "E" qualifier denotes that this is an estimated value because the concentration detected was outside of the calibration range. VOCs and SVOCs were not detected in any of the soil samples submitted to AEL.

One or more of the metals analyzed by AEL were detected in each of the soil samples submitted for analysis. These metals include arsenic, barium, chromium, lead, mercury, and zinc.

TPH was detected in soil samples from soil borings NK-SB-30, NK-SB-32, and NK-SB-38 through NK-SB-41. The highest TPH concentration detected was 681 milligrams per kilograms (mg/kg) in boring NK-SB-30 at a depth of 6 to 8 feet. An elevated concentration of TPH (678 mg/kg) was also detected in the soil sample from the 2 to 4 foot interval of soil boring NK-SB-32.

Concentrations of constituents detected in the groundwater samples are presented in Table 4. A complete summary of groundwater analytical results with detection limits is presented in Table 5. Detected concentrations at each sampling location are shown on Drawing 2. TPH, SVOCs, and VOCs were not detected in the groundwater sample analyzed by AEL from screenpoint location NK-SB-39.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for metals. The concentrations of the metals detected in the soil samples are typical of background concentrations, except for barium in boring NK-SB-39. Since none of the other metals detected in this sample were elevated above background, it is likely that the barium is not indicative of a release from this unit. For the metals detected in soil, no exceedances of the default numeric RDEC and IDEC were noted.

The concentration of the TPH and TCE detected in the soil samples are indicative of a release from this unit. For the TPH detected in the soil samples from NK-SB-30 and NK-SB-32, exceedances of the default numeric RDEC were noted, as shown on Table 6 and Table 7. The source for the TPH contamination is believed to be the flammable and combustible materials

used for testing in this area. The concentration of TCE in the soil sample from NK-SB-38 exceeds the default numeric GBPMC. However, this TCE contamination is located below the seasonal high water table, thus any GBPMC exceedance may be disregarded at this depth. For the VOCs and TPH detected in soil from above the water table, no exceedances of the GBPMC were noted.

Based on the presence of VOCs and TPH in the soil samples, there is evidence that a release of petroleum products has occurred. The degree and extent of the release has not been adequately characterized in the vicinity of the dry wells.

October 1996 Investigation (LEA):

Description: During October thirteen soil borings, NK-SB-88 through NK-SB-99 and NK-SB-200, were advanced in the vicinity of the three dry wells. The sampling locations are shown on Drawing 1. Borings NK-SB-88 through NK-SB-95 and NK-SB-200 were advanced to a depth of twelve feet. The depth of twelve feet was selected to ensure that the top of the varved clay was encountered. Borings NK-SB-96 through NK-SB-99 were advanced to a depth of eight feet. The depth of eight feet was selected to investigate a specific zone because of contamination previously encountered in the vicinity of these borings. Soil samples were collected from each of the borings in continuous two-foot intervals. A summary of the samples collected and analyses performed is included in Table 1.

A total of 71 soil samples were submitted to the LEA Analytical Laboratory and screened for the presence of target VOCs. Based on visual, olfactory, or instrument evidence, and with consideration of the potential release mechanism, one or two samples from each boring were submitted to AEL and analyzed for the presence of VOCs, SVOCs, and TPH.

In addition, groundwater samples were collected from borings NK-SB-88, NK-SB-90, and NK-SB-93 through NK-SB-95, using Geoprobe screenpoint groundwater sampling techniques. The groundwater samples were collected from a depth of 6 to 8 feet below the ground surface. In addition a groundwater sample was collected from boring NK-SB-200, using a temporary PVC well. This temporary PVC well was screened from 3.5 to 8.5 feet. The groundwater samples were submitted to AEL for analysis of VOCs, SVOCs, and TPH. A summary of the samples collected and analyses performed is included in Table 1.

Investigation Results: Based on the boring logs, groundwater was encountered at approximately 4 to 6 feet in borings all of the borings. Varved clay was encountered at 8.5 feet in boring NK-SB-94; at approximately 9 feet in boring NK-SB-89; at 9.5 feet in boring NK-SB-91; at approximately 10 feet in borings NK-SB-88, NK-SB-90, NK-SB-92, and NK-SB-93; and at 11.5 feet in boring NK-SB-95. Varved clay was not encountered in borings NK-SB-96 through NK-SB-99 because the borings were terminated before it was encountered.

Olfactory and/or visual evidence of contamination was noted on several of the boring logs. A hydrocarbon odor was noted in boring NK-SB-88 at a depth of 4 to 8 feet. A possible solvent (cleaner) odor was noted in boring NK-SB-93 at a depth of 4 to 6 feet, and a hydrocarbon odor was noted at a depth of 6 to 8 feet. In addition, a light nonaqueous phase liquid (LNAPL) was observed in the groundwater sample collected from NK-SB-93. A strong possible solvent

(sweet) odor was noted in boring NK-SB-96 at a depth of 4 to 6 feet and a hydrocarbon odor was noted in this boring from 6 to 8 feet with visual oil (i.e., LNAPL) from 7 to 7.5 feet. A possible solvent odor was noted in boring NK-SB-97 at a depth of 4 to 5.5 feet and a hydrocarbon odor was noted in this boring from 5.5 to 8 feet. A hydrocarbon odor was noted in boring NK-SB-98 from 5.5 to 8 feet with visual oil from 7 to 8 feet. A hydrocarbon odor was noted in boring NK-SB-99 from 5.5 to 8 feet with visual oil from 6.5 to 7.5 feet.

Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each sampling location are shown on Drawing 1. VOCs were detected in the soil samples submitted to the LEA Analytical Laboratory from borings NK-SB-92 through NK-SB-94, NK-SB-96, NK-SB-97, and NK-SB-99. BZ, EBZ, PCE, XYL, TL and TCE were the VOCs detected in the soil samples submitted to the LEA Analytical Laboratory. All of the aforementioned VOCs were detected below the water table, except for PCE, TCE, and XYL in borings NK-SB-96 and NK-SB-97. The highest VOC detect was EBZ at a concentration of 1850 µg/kg in boring NK-SB-93 at a depth of 6 to 8 feet.

One VOC was detected in a soil sample submitted to AEL from boring NK-SB-93. XYL was detected in boring NK-SB-93 at 6 to 8 feet at a concentration of 193 μ g/kg. SVOCs were not detected in soil samples submitted to AEL.

TPH was detected in the soil samples submitted to AEL from borings NK-SB-93, NK-SB-94, NK-SB-96, NK-SB-97, and NK-SB-99. The highest TPH detect was 450 mg/kg in boring NK-SB-96 at a depth of 4 to 6 feet.

Concentrations of constituents detected in the groundwater samples are presented in Table 4. A complete summary of groundwater analytical results with detection limits is presented in Table 5. Detected concentrations at each sampling location are shown on Drawing 2. One VOC was detected in the groundwater samples analyzed for VOCs by AEL. XYL was detected at a concentration of 1600 μ g/l in screenpoint location NK-SB-93. VOCs were not detected in the groundwater samples analyzed by AEL from screenpoint locations NK-SB-88, NK-SB-90, NK-SB-91, NK-SB-94, and NK-SB-95.

Only one SVOC was detected in the groundwater samples that were analyzed by AEL. Bis(2-ethylhexyl) phthalate (DEHP) was detected in the groundwater sample from boring NK-SB-200 at a concentration of 3.07U µg/l. The "U" qualifier denotes a None Detect (ND), as this compound was qualified due to the presence of the compound in the blank. SVOCs were not detected in the groundwater samples analyzed by AEL from screenpoint locations NK-SB-88, NK-SB-90, NK-SB-91, and NK-SB-93 through NK-SB-95.

TPH was detected in two of the groundwater samples analyzed by AEL. TPH was detected in screenpoint locations NK-SB-93 and NK-SB-94. The highest concentration of TPH noted was 54.8 mg/l in the groundwater sample collected from NK-SB-93. A hydrocarbon fingerprint analysis was performed by AEL on the (LNAPL) in the groundwater sample from screenpoint location NK-SB-93. The elution pattern of this layer was described as resembling gasoline and contained hydrocarbons in the C2 to C6 range.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals, as discussed previously. Based on the presence of visual oil, VOCs, and TPH in the soil samples and based on the XYL and TPH in the groundwater; there is evidence that a release of petroleum has occurred.

April 1997 Remediation (LEA):

Description: As part of the Septic System Removal Project conducted in the Airport/Klondike Area, the three dry wells in the X-401 Area were removed on April 10, 1997 by Environmental Remediation, Inc. (ERI). The soil in the vicinity of boring NK-SB-93 was also removed as part of this project. The soil excavated during these removal activities was disposed of off the site as a non-hazardous waste.

The excavations were identified as test pits NK-TP-07, NK-TP-08, NK-TP-09, and NK-TP-10 for the north dry well, the vicinity of NK-SB-93, the middle dry well, and the south dry well, respectively. The excavation for NK-TP-07 was approximately 28 feet by 11 feet by 4.2 feet deep with groundwater encountered at approximately 4 feet. The excavation for NK-TP-08 was approximately 19.6 feet by 20 feet by 4.1 feet deep with groundwater encountered at approximately 4 feet. The excavation for NK-TP-09 was approximately 3 feet by 3 feet by 3 feet deep. The excavation for NK-TP-10 was approximately 21 feet by 12 feet by 5.3 feet deep with groundwater encountered at approximately 5.3 feet. The location of the test pits are shown on Drawing 1.

Following the excavation of the test pits, confirmational soil samples, including duplicate soil samples, were collected from each of the four sidewalls of the test pits on April 11, 1997. Bottom samples were not collected if the particular excavation extended into the groundwater table. These soil samples were submitted to Environmental Science Services Laboratory (ESS) for analysis. Due to data validation issues, analytical results from ESS were deemed unusable for the Airport/Klondike Project. Subsequent to these concerns, ESS analytical results have not been considered within this Unit-Specific Technical Memorandum.

The confirmational side wall samples and duplicate samples were recollected on June 9, 1997. These soil samples were submitted to Quanterra Inc. (QNT) for analysis of VOCs, SVOCs, PCBs, metals, and TPH. A summary of the samples collected and analyses performed are included in Table 1.

Investigation Results: Concentrations of constituents detected in soil samples collected for this unit are presented in Table 2. A complete summary of soil analytical results with detection limits is presented in Table 3. Detected concentrations at each sampling location are shown on Drawing 1.

VOCs and SVOCs were not detected in the confirmational samples submitted to QNT for analysis. PCBs were detected in the soil sample from NK-TP-09W at a concentration of 40 μ g/kg. In a duplicate soil sample from NK-TP-09W PCBs were not detected. TPH was detected in soil samples from NK-TP-08B and NK-TP-10B. The highest concentration of TPH detected was from NK-TP-10B at a concentration of 4200 mg/kg.

One or more of the metals analyzed by QNT were detected in each of the soil samples submitted for analysis. These metals include arsenic, barium, cadmium, chromium, lead, mercury, nickel, and zinc.

Data Evaluation and Conclusions: The data were compared against the default numeric criteria included in the RSR and the site-wide background soil concentrations for various metals. The concentrations of the metals detected in the soil samples are typical of background concentrations, except for zinc concentrations in soil samples from NK-TP-08B, NK-TP-09W, NK-TP-09W, and a duplicate sample from NK-TP-09W. Since none of the other metals detected in these samples were elevated above background, it is likely that the zinc is not indicative of a release from this unit. For the metals detected in soil no exceedances of the default numeric RDEC or IDEC were noted.

For the PCBs detected in soil no exceedances of the RSR were noted. TPH was detected above the default numeric RDEC, IDEC, and the GBPMC in the soil sample collected from NK-TP-10B. Soil exceedances of the RDEC, IDEC, and the GBPMC are shown in Table 7, Table 8, and Table 9, respectively.

In summary, lead was detected in NK-SS-02 above the RDEC of 500 mg/kg, but not the IDEC of 1000 mg/kg. Lead (TCLP) was detected above the GBPMC of 0.15 mg/l in NK-SS-01 and NK-SS-02. TPH was detected above the RDEC of 500 mg/kg, but not IDEC of 2500 mg/kg in soil samples collected from borings NK-SB-30 at a depth of 6 to 8 feet and NK-SB-32 at a depth of 2 to 4 feet. TPH was detected above the RDEC of 500 mg/kg, the IDEC of 2500 mg/kg, and the GBPMC of 2500 mg/kg in the confirmational soil sample collected from NK-TP-10B. BZ was detected in the groundwater at NK-GP-03 above RVC of 215 μ g/l, but not the IVC of 530 μ g/l.

All of the soil exceedances listed above have been remediated, with the exception of the TPH exceedance noted in NK-SB-30 and the TCE exceedance noted in NK-SB-38. The TPH exceedance noted in the 6 to 8 foot interval in boring NK-SB-30 is in an area where an Environmental Land Use Restriction (ELUR) will be placed to satisfy the criteria for inaccessible soil. The concentration of TCE in the soil sample from NK-SB-38 exceeds the default numeric GBPMC. However, this TCE contamination is located below the seasonal high water table, thus any GBPMC exceedance may be disregarded at this depth. Based on the results of the laboratory analyses of soil samples, this unit is believed to be adequately characterized and no further action is warranted for this unit.

The exceedance of the default numeric RVC for BZ noted in the groundwater sample from NK-GP-03 appears to be attributable to the North dry well. With the subsequent soil removal in the vicinity of this dry well, the potential source of soil contamination has been removed. The lack of VOCs in groundwater samples collected downgradient from this unit indicates a minimal impact on groundwater in the vicinity of this unit. For a more detailed account of the groundwater sampling that included Geoprobe screenpoint groundwater samples and monitoring well refer to TM 3, Groundwater Sampling and Quality.

References

Keystone Aerial Surveys, Inc., 1975, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc., 1970, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Keystone Aerial Surveys, Inc., 1965, Aerial Photo of Rentschler Airport and Surrounding Areas, East Hartford, CT.

Metcalf & Eddy, Inc., July 1993, Draft Report - Klondike Area Site Investigation, UTC / Pratt & Whitney Facility, East Hartford, CT, prepared for Pratt & Whitney.

Peterson and Hoffman Engineers, 1962, *Utility Plan*, prepared for United Technologies Corporation.

P&W Photographic Services Department, 1969, *Aerial Photograph, Negative Z-36268*, Pratt & Whitney, East Hartford, CT.

P&W Photographic Services Department, 1975, *Aerial Photograph, Negative CN-50747*, Pratt & Whitney, East Hartford, CT.

Westinghouse Environmental and Geotechnical Services, Inc. 1990, *Preliminary Reconnaissance Survey of the Klondike Area*, Pratt & Whitney, East Hartford, Connecticut, unpublished report for Pratt & Whitney.

Page 1 of 7

		ole Information				Analysis Information								
Location ID	Sample ID	Sample Date	From (ft)	To (ft)	Class	Portable GC	Volatile Organics	Semivolatile Organics	Herbicides	Pesticides	PCBs	Metals	Extraction	Miscellaneous
NIV CD 01	1016949	1/ 1/93		.	GW	x						:		i
NK-GP-01					GW						<u> </u>	·		
NK-GP-02	1016950	1/ 1/93				X						ļ		
NK-GP-03	1016951	1/ 1/93		<u>.</u> .	GW	X						ļ		
NK-GP-04	1016952	1/ 1/93			GW	x								
NK-GP-08	1016956	1/ 1/93			GW	x						i		
NK-GP-09	1016957	1/ 1/93			GW	х						<u> </u>		
NK-GP-10	1016958	1/ 1/93			GW	х								
NK-GP-11	1016959	1/ 1/93			GW	x								
NK-GP-22	1016970	1/ 1/93			GW	х						!		
NK-GP-23	1016971	1/ 1/93			GW	х								
NK-MW-11	1016641	8/ 5/96	0.0		GW		X					X		х
NK-MW-11	1634473	6/ 3/97	0.0		GW		х					x		
NK-MW-11	1647393	11/20/97			GW	1	x					х		
NK-MW-19	1016079	7/18/96	0	2	SB	х	х	x				X	x	х
NK-MW-19	1016080	7/18/96	2	4	SB	×								
NK-MW-19	1016081	7/18/96	4	6	SB	x								
NK-MW-19	1016082	7/18/96	6	8	SB	х	х	х				X		x
NK-MW-19	1016083	7/18/96	8	10	SB	х								
NK-MW-19	1016084	7/18/96	10	12	SB	х								
NK-MW-19	1016085	7/18/96	12	14	SB	х								i
NK-MW-19	1016086	7/18/96	14	15	SB	x								
NK-MW-19	1016640	8/ 5/96	1.7	10.7	GW	·	×		.=			X		x
NK-MW-19	1634493	6/ 5/97	1.7	10.7	GW							x-		
NK-MW-19	1647330	11/19/97	1.7	10.7	GW	.						X		12 12.0
NK-SB-200	1019372	10/14/96	0	2	SB	x								
NK-SB-200	1019373	10/14/96	2	4	SB	x								
NK-SB-200	1018900	10/14/96	3.5	8.5	GW		x	x						x
NK-SB-200	1019374	10/14/96	4	6	SB	x	x	x						- x
NK-SB-200	1019375	10/14/96	4	6	SB	x								
NK-SB-200	1019376	10/14/96	6	8	SB	x								
NK-SB-200	1019377	10/14/96	8	10	SB	- x								
55 200	1017011				1							· · · · · · · · · · · · · · · · · · ·		

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

Page 2 of 7

		ple Information				Analysis Information									
Location ID	Sample ID	Sample Date			Class	_	Volatile Organics	Semivolatile Organics	Herbicides	Pesticides	PCBs	Metals	Extraction	Miscellaneou	
NK-SB-200	1019378	10/14/96	10	12	SB	х									
NK-SB-30	1016026	7/16/96	0	2	SRB	x						i :			
NK-SB-30	1016027	7/16/96	2	4	SRB	×	х	x				X	x	x	
NK-SB-30	1016028	7/16/96	4	6	SRB	х									
NK-SB-30	1016029	7/16/96	6	8	SB	x	x	x				X		X	
NK-SB-30	1016030	7/16/96	8	10	SB	х									
NK-SB-30	1016031	7/16/96	10	12	SB	x									
NK-SB-30	1016032	7/16/96	12	14	SB	х						1	:	1	
NK-SB-30	1016033	7/16/96	14	15	SB	х									
NK-SB-31	1016043	7/17/96	0	2	SB	х								!	
NK-SB-31	1016044	7/17/96	2	4	SB	x	X	x	*			X	x	x	
NK-SB-31	1016045	7/17/96	4	6	SB	х						t · · · · · · · · · · · · · · · · · · ·			
NK-SB-31	1016046	7/17/96	6	8	SB	х						i			
NK-SB-31	1016047	7/17/96	6	8	SB	х	x	x				X		x	
NK-SB-31	1016048	7/17/96	8	10	SB	х						į			
NK-SB-31	1016049	7/17/96	10	12	SB	х						!		!	
NK-SB-31	1016050	7/17/96	12	14	SB	х				· · · · · · · · · · · · · · · · · · ·					
NK-SB-31	1016051	7/17/96	14	15	SB	х					-				
NK-SB-32	1016034	7/16/96	0	2	SRB	х									
NK-SB-32	1016035	7/16/96	2	4	SRB	х	х	x				X	X	X	
NK-SB-32	1016036	7/16/96	4	6	SRB	х							-		
NK-SB-32	1016037	7/16/96	6	8	SB	x	x	x				X	<u>.</u>	. x	
NK-SB-32	1016038	7/16/96	8	10	SB	x							 		
NK-SB-32	1016039	7/16/96	10	12	SB	x	······					·	İ	•	
NK-SB-32	1016040	7/16/96	12	14	SB	x						<u> </u>	 	•	
NK-SB-32	1016041	7/16/96	14	15	SB	x									
NK-SB-36	1016123	7/22/96	0	2	SRB	x	x	x				X	X	x	
NK-SB-36	1016124	7/22/96	2	4	SRB	x							1		
NK-SB-36	1016125	7/22/96	4	6	SB	X	x	x				X	<u>:</u> !	x	
NK-SB-36	1016126	7/22/96	6	8	SB	x -									
NK-SB-36	1016127	7/22/96	8	10	SB	$\frac{1}{x}$									
NK-SB-36	1016128	7/22/96	10	12	ŚB	X						:			

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

^{2.} Printed on 06/15/98

Page 3 of 7

		ple Information				Analysis Information									
Location ID	Sample ID	Sample Date			Class		Volatile Organics	Semivolatile Organics	Herbicides	Pesticides	PCBs	Metals	Extraction	Miscellaneou	
NK-SB-36	1016129	7/22/96	12	14	SB	х						İ		i	
NK-SB-36	1016130	7/22/96	14	15	SB	х									
NK-SB-37	1016114	7/22/96	0	2	SB	x									
NK-SB-37	1016115	7/22/96	2	4	SB	x	x	x				X	X	х	
NK-SB-37	1016116	7/22/96	4	6	SB	x									
NK-SB-37	1016117	7/22/96	4	6	SB	х						<u>. </u>			
NK-SB-37	1016118	7/22/96	6	8	SB	х	х	x	,			X		x	
NK-SB-37	1016119	7/22/96	8	10	SB	х						:			
NK-SB-37	1016120	7/22/96	10	12	SB	х									
NK-SB-37	1016121	7/22/96	12	14	SB	х									
NK-SB-37	1016122	7/22/96	14	15	SB	x						·	<u> </u>		
NK-SB-38	1016131	7/22/96	0	2	SRB	х	х	х				X	X	х	
NK-SB-38	1016132	7/22/96	2	4	SRB	х							 		
NK-SB-38	1016320	7/22/96	4	6	SB	x									
NK-SB-38	1016321	7/22/96	6	8	SB		х	x				X	<u> </u>	X	
NK-SB-38	1016323	7/22/96	10	12	SB	Х							1		
NK-SB-39	1016105	7/19/96	0	2	SB	x	x	x			<u>-</u>	X	X	X	
NK-SB-39	1016106	7/19/96	2	4	SB	х							!		
NK-SB-39	1016107	7/19/96	4	6	SB	х						:	+		
NK-SB-39	1016108	7/19/96	6	8	SB	х	X	x				X		x	
NK-SB-39	1016109	7/19/96	8	10	SB	х							† · · · · ·		
NK-SB-39	1016110	7/19/96	10	12	SB	х						· · · · · · · · · · · · · · · · · · ·	<u> </u>		
NK-SB-39	1016111	7/19/96	12	14	SB	x					* ·		<u>+</u>		
NK-SB-39	1016112	7/19/96	14	15	SB	x							 		
NK-SB-39	1016391	7/23/96	5	7	GW	1	х	x		i		x	 	x	
NK-SB-40	1016088	7/19/96	0	2	SB	x	x	X				X	X	X	
NK-SB-40	1016089	7/19/96	2	4	SB	х							<u> </u>		
NK-SB-40	1016090	7/19/96	2	4	SB	x					•	. — 			
NK-SB-40	1016091	7/19/96	4	6	SB	X	·								
NK-SB-40	1016092	7/19/96	6	8	SB	X	x	x				X	 	x	
NK-SB-40	1016093	7/19/96	8	10	SB	x									
NK-SB-40	1016094	7/19/96	10	12	SB	x									

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

Page 4 of 7

		le Information			Ţ	Analysis Information									
Location ID	Sample ID	Sample Date		To (ft)	Class		Volatile Organics	Semivolatile Organics	Herbicides	Pesticides	PCBs	Metals	Extraction	Miscellaneous	
NK-SB-40	1016095	7/19/96	12	14	SB	х								1	
NK-SB-40	1016096	7/19/96	14	15	SB	x									
NK-SB-41	1016097	7/19/96	0	2	SRB	х	x	X				X	X	X	
NK-SB-41	1016098	7/19/96	2	4	SB	х							T		
NK-SB-41	1016099	7/19/96	4	6	SB	х						<u> </u>			
NK-SB-41	1016100	7/19/96	6	8	SB	X	х	x				X		x	
NK-SB-41	1016101	7/19/96	8	10	SB	х									
NK-SB-41	1016102	7/19/96	10	12	SB	х						•			
NK-SB-41	1016103	7/19/96	12	14	SB	x						·	•		
NK-SB-41	1016104	7/19/96	14	15	SB	x						:			
NK-SB-88	1018854	10/ 7/96	0	2	SRB	х						! !			
NK-SB-88	1018855	10/ 7/96	2	4	SRB	x						-			
NK-SB-88	1018856	10/ 7/96	2	4	SRB	х									
NK-SB-88	1018857	10/ 7/96	4	6	SB	х									
NK-SB-88	1018858	10/ 7/96	6	8	SB	х	х	х				· · · · · · · · · · · · · · · · · · ·		x	
NK-SB-88	1018894	10/ 7/96	6	8	GW	<u> </u>	х	х						x	
NK-SB-88	1018859	10/ 7/96	10	12	SB	x									
NK-SB-89	1018860	10/ 7/96	0	2	SB	х								ļ -	
NK-SB-89	1018861	10/ 7/96	2	4	SB	х								<u> </u>	
NK-SB-89	1018862	10/ 7/96	4	6	SB	х							-		
NK-SB-89	1018863	10/ 7/96	6	8	SB	x								!	
NK-SB-89	1018864	10/ 7/96	9	10	SB	х								· · ·	
NK-SB-89	1018865	10/ 7/96	10	12	SB	х	х	x						x	
NK-SB-90	1018868	10/ 8/96	0	2	SB	x					_			 	
NK-SB-90	1018869	10/ 8/96	2	4	SB	х					-			• 	
NK-SB-90	1018870	10/ 8/96	4	6	SB	х	х	x						x	
NK-SB-90	1018871	10/ 8/96	4	6	SB	х	х	x						x	
NK-SB-90	1018872	10/ 8/96	6	8	SB	x									
NK-SB-90	1018895	10/ 8/96	6	- 8	GW		x	x						х	
NK-SB-90	1018873	10/ 8/96	8	10	SB	х									
NK-SB-90	1018874	10/ 8/96	10	12	SB	х									
NK-SB-91	1018875	10/ 8/96	0	2	SB	x								<u> </u>	

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

Page 5 of 7

··.		ple Information			,	Analysis Information									
Location ID	Sample ID	Sample Date	From (ft)	To (ft)	Class	Portable GC	Volatile Organics	Semivolatile Organics	Herbicides	Pesticides	PCBs	Metals	Extraction	Miscellaneous	
NK-SB-91	1018876	10/ 8/96	2	4	SB	х						-	i I		
NK-SB-91	1018877	10/ 8/96	4	6	SB	x									
NK-SB-91	1018878	10/ 8/96	6	8	SB	×	x	x				1		x	
NK-SB-91	1018896	10/ 8/96	6	8	GW		x	x				!		x	
NK-SB-91	1018879	10/ 8/96	8	10	SB	х							1		
NK-SB-91	1018880	10/ 8/96	10	12	SB	x									
NK-SB-92	1018881	10/ 8/96	0	2	SB	х						!		i	
NK-SB-92	1018882	10/ 8/96	2	4	SB	х						:	1		
NK-SB-92	1018883	10/ 8/96	4	6	SB	×									
NK-SB-92	1018884	10/ 8/96	6	8	SB	Х	x	x						x	
NK-SB-92	1018885	10/ 8/96	8	10	SB	x									
NK-SB-92	1018886	10/ 8/96	10	12	SB	x									
NK-SB-93	1018889	10/ 9/96	0	2	SRB	x						1		i	
NK-SB-93	1018890	10/9/96	2	4	SRB	х						i		· · · · · · · · · · · · · · · · · · ·	
NK-SB-93	1018891	10/ 9/96	4	6	SRB	X				-		!		ļ 	
NK-SB-93	1018892	10/ 9/96	4	6	SB	Х	x	x						· X	
NK-SB-93	1018893	10/ 9/96	6	8	SB	X	X	х				•	 	X	
NK-SB-93	1018897	10/ 9/96	6	8	GW		X	x						<u>X</u>	
NK-SB-93	1019176	10/ 9/96	8	10	SB	X							<u> </u>		
NK-SB-93	1019177	10/ 9/96	10	12	SB	\overline{X}							1		
NK-SB-94	1019178	10/ 9/96	0	2	SB	x						!	1		
NK-SB-94	1019179	10/ 9/96	2	4	SB	х						·	 	•	
NK-SB-94	1019180	10/ 9/96	4	6	SB	x	x	x						<u>x</u> —	
NK-SB-94	1018898	10/ 9/96	6	8	GW		x	x						<u>x</u>	
NK-SB-94	1019182	10/ 9/96	8	10	SB	Х									
NK-SB-94	1019183	10/ 9/96	10	12	SB	x						:			
NK-SB-95	1019184	10/ 9/96	0	2	SB	х						!	-	<u> </u>	
NK-SB-95	1019185	10/ 9/96	2	4	SB	x								:	
NK-SB-95	1019186	10/ 9/96	4	6	SB	x x						•			
NK-SB-95	1018899	10/ 9/96	6	8	GW	 	x	x			-	!	-	x	
NK-SB-95	1019187	10/ 9/96	6	8	SB	x	x	x			- 	,		x	
NK-SB-95	1019188	10/ 9/96	8	10	SB	x	 					·			
			<u> </u>												

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

Table 1 SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION P&W East Hartford: X-401 Drywells

Page 6 of 7

		le Information				Analysis Information										
Location ID	Sample ID	Sample Date			Class		Volatile Organics	Semivolatile Organics	Herbicides	Pesticides	PCBs	Metals	Extraction	Miscellaneou		
NK-SB-95	1019189	10/ 9/96	10	12	SB	х							1	1		
NK-SB-96	1019192	10/10/96	0	2	SRB	X	х							x		
NK-SB-96	1019193	10/10/96	2	4	SRB	Х	x	x						х		
NK-SB-96	1019194	10/10/96	4	6	SRB	Х								Х		
NK-SB-96	1019195	10/10/96	6	8	SB									X		
NK-SB-97	1019197	10/10/96	0	2	SRB	Х								x		
NK-SB-97	1019198	10/10/96	2	4	SRB	х				·				x		
NK-SB-97	1019199	10/10/96	4	6	SRB	X	x					† · · ·		X		
NK-SB-98	1019201	10/10/96	0	2	SRB	х						İ -		x		
NK-SB-98	1019202	10/10/96	2	4	SRB									x		
NK-SB-98	1019203	10/10/96	4	6	SRB	х	х	x				1		x		
NK-SB-99	1019205	10/10/96	0	2	SRB	х								x		
NK-SB-99	1019206	10/10/96	2	4	SRB	х								x		
NK-SB-99	1019207	10/10/96	4	6	SRB	×								X		
NK-SB-99	1019208	10/10/96	6	8	SB		x	x					-	х		
NK-SS-01	01015052093	5/20/93			SRS	1	х	x			X	X	X			
NK-SS-02	01025052093	5/20/93			SRS		x	x			x	X	X			
NK-SS-03	01035052093	5/20/93			SRS		x	х			X	· - X	X			
NK-SS-03D	01045052093	5/20/93	<u> </u>		SS		x	х			X	X	X			
NK-TP-07Br	1635120	6/ 9/97	İ		SRS		x	x				X		х		
NK-TP-07E	1635118	6/ 9/97	1		SRS		x	х				X		х		
NK-TP-07N1	1635114	6/ 9/97			SRS		x	x				X		x		
NK-TP-07N2	1635115	6/ 9/97			SRS		x	x				X		x		
NK-TP-07\$1	1635116	6/ 9/97			SRS		x	x				X	<u> </u>	x		
NK-TP-07S2	1635117	6/ 9/97			SRS		х	х				X		х		
NK-TP-07W	1635119	6/ 9/97			SRS		x	х				X		х		
NK-TP-08B	1635125	6/ 9/97			SS		х	х				X		X		
NK-TP-08E	1635123	6/ 9/97			SS		x	x				X	 	x		
NK-TP-08N	1635121	6/ 9/97			SS		x	х				Х		x		
NK-TP-08S	1635122	6/ 9/97	<u> </u>		SS	· · · · · · · · · · · · · · · · · · ·	x	х				X		X		
NK-TP-08W	1635124	6/ 9/97			SS		x	x				X		x		
NK-TP-09B	1635131	6/ 9/97			SS	 	x	x		-	x	X		x		

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

^{2.} Printed on 06/15/98

Table 1 SUMMARY OF SAMPLING AND ANALYTICAL INFORMATION P&W East Hartford: X-401 Drywells

Page 7 of 7

Sample Information							An	alysis Info	rmation		,		
Location ID	Sample ID		From (ft) To (ft)	Class	Portable GC	Volatile Organics	Semivolatile Organics	Herbicides	Pesticides	PCBs	<u> </u>	Extraction	Miscellaneou
NK-TP-09E	1635128	6/ 9/97		SS		x	X			х	X		х
NK-TP-09N	1635126	6/ 9/97		SS		х	x			х	X		х
NK-TP-09S	1635127	6/ 9/97		SS		х	x			х	X		x
NK-TP-09W	1635129	6/ 9/97		SS		X	x			X	X		x
NK-TP-09W	1635130	6/ 9/97		SS		х	х			x	X		x
NK-TP-10B	1635138	6/ 9/97		SRS		X	x				X		X
NK-TP-10E1	1635134	6/ 9/97		SS		х	x				X		x
NK-TP-10E2	1635135	6/ 9/97		SS		x	X				X		х
NK-TP-10N	1635132	6/ 9/97		SS		x	X				X		x
NK-TP-10S	1635133	6/ 9/97		SS		х	x				X		х
NK-TP-10W1	1635136	6/ 9/97		SS		x	x				X		x
NK-TP-10W2	1635137	6/ 9/97		SS		x	X				X		x
						,							

Notes: 1. Legend: X - Analysed; at least one analyte over the detection limit; x - Analysed, no analytes in group over the detection limit

2. Printed on 06/29/98

Page 1 of 26

								146010120
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1641788	1016079	1016079	1016082	1016027	1016027	1016029
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	08:35	13:26	13:26	13:52	14:00	14:00	14:20
	Sample Depth		0' - 2'	0' - 2'	6' - 8'	2' - 4'	2' - 4'	6' - 8'
	Laboratory	accu	AEL	AEL	AEL	AEL	AEL	AEL
	Lab. Number	E27722-2	AEL96008040	AEL96010908	AEL96008041	AEL96007934	AEL96010896	AEL96007935
Constituent	Units							
Date Metals Analyzed	•	11/15/1997	08/01/1996		08/01/1996	07/29/1996		07/29/1996
Date Organics Analyzed	-							
Date PCBs Analyzed	-							
Date Physical Analysed	-							08/06/1996
Date of Metals SPI.P Analysis	-							
Date of Metals TCLP Analysis	•							
Date of Other SPLP Analysis	-			10/16/1996			10/09/1996	
Extraction Fluid No.	-	1		1			1	
Arsenic	mg/kg	1.2			1			
Barium	mg/kg	29.6	9.34		12.1	9.05		10.4
Barium (SPLP)	mg/L	<u> </u>						
Cadmium	mg/kg	1						
Cadmium (TCLP)	mg/l							
Chromium	mg/kg	7.2	8.63			6.53		
Chromium (Total)	mg/kg	<u> </u>				1		
Lead	mg/kg	13						
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg	0.19						
Nickel	mg/kg	7.8						
Nickel (TCLP)	mg/l							
Silver	mg/kg							
Zine	mg/kg	29.1	20.2		25.4	10		9.22
Zinc (TCLP)	mg/l							
Zine (SPLP)	mg/L							
PCB 1254	μg/kg							
PCB 1260	μg/kg			L				
Total Petroleum Hydrocarbons	mg/kg	T						681

Notes: 1. Only Detects Shown

Page 2 of 26

								Tuge Z of Ze
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1641788	1016079	1016079	1016082	1016027	1016027	1016029
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	08:35	13:26	13:26	13:52	14:00	14:00	14:20
	Sample Depth		0' - 2'	0' - 2'	6' - 8'	2' - 4'	2' - 4'	6' - 8'
	Laboratory	accu	AEL	AEL	AEL	AEL	AEL	AEL
	Lab. Number	E27722-2	AEL96008040	AEL96010908	AEL96008041	AEL96007934	AEL96010896	AEL96007935
Constituent	Units							
Acetone	μg/kg							
Benzene (screening)	μg/kg							
Ethylbenzene (screening)	μg/kg							
Tetrachloroethylene	μg/kg							
Tetrachloroethylene (screening)	μg/kg							
Toluene (screening)	μg/kg							
Trichloroethylene (screening)	μg/kg							
Xylenes (Total)	μg/kg							
Xylenes (Total) (screening)	μg/kg							
							<u> </u>	
								
		 		±		+	+	+

Notes: 1. Only Detects Shown

Page 3 of 26

								1 agc 3 01 20
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36
	Sample ID	1016044	1016044	1016047	1016035	1016035	1016037	1016123
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996
	Sample Time	09:48	09:48	10:18	15:27	15:27	00:00	12:30
	Sample Depth	2' - 4'	2' - 4'	6' - 8'	2' - 4'	2' - 4'	6' - 8'	0' - 2'
	Laboratory	AEL	AEL	AEL	AEL	AEL	AEL	AEL
	Lab. Number	AEL96008032	AEL96010897	AEL96008033	AEL96007936	AEL96010898	AEL96007937	AEL96008139
Constituent	Units							
Date Metals Analyzed		07/29/1996		07/29/1996	07/29/1996		07/29/1996	08/01/1996
Date Organics Analyzed			-					
Date PCBs Analyzed								
Date Physical Analysed	•		,		08/06/1996			
Date of Metals SPLP Analysis	-					10/17/1996		
Date of Metals TCLP Analysis								
Date of Other SPLP Analysis	-		10/09/1996			10/09/1996		
Extraction Fluid No.	-		1			1		
Arsenic	mg/kg							
Barium	mg/kg	12.8		34.5	12		14.9	13.3
Barium (SPLP)	mg/L							
Cadmium	mg/kg							
Cadmium (TCLP)	mg/l							
Chromium	mg/kg				6.55			13.4
Chromium (Total)	mg/kg							
Lead	mg/kg							
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg							
Nickel	mg/kg	<u></u>						
Nickel (TCLP)	mg/l							
Silver	mg/kg							
Zinc	mg/kg	10.9		10.7	14		10.7	62.2
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L					0.054		
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Total Petroleum Hydrocarbons	mg/kg				678			

Notes: 1. Only Detects Shown

Page 4 of 26

	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36
	Sample ID	1016044	1016044	1016047	1016035	1016035	1016037	1016123
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996
	Sample Time	09:48	09:48	10:18	15:27	15:27	00:00	12:30
	Sample Depth	2' - 4'	2' - 4'	6' - 8'	2' - 4'	2' - 4'	6' - 8'	0' - 2'
	Laboratory	AEL	AEL	AEL	AEL	AEL	AEL	AEL
	Lab. Number	AEL96008032	AEL96010897	AEL96008033	AEL96007936	AEL96010898	AEL96007937	AEL96008139
Constituent	Units							
Acetone	μg/kg							
Benzene (screening)	μg/kg							
Ethylbenzene (screening)	μg/kg							
Tetrachloroethylene	μg/kg		,					
Tetrachloroethylene (screening)	μg/kg							
Toluene (screening)	μg/kg							
Trichloroethylene (screening)	μg/kg							
Xylenes (Total)	μg/kg							
Xylenes (Total) (screening)	μg/kg							
				<u> </u>		<u> </u>	1	· · · · · · · · · · · · · · · · · · ·
							-	
		<u> </u>		1				
			 	<u> </u>		-		
	-						+	
			 		 		+	+
		 	+		 	+	 	+
		 	 			 	 	
		 					+	
		 	 	- 		 	+	
		 	 	-		+	-	+
					 		+	

Notes: 1. Only Detects Shown

Page 5 of 26

								1 age 3 01 2
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37
	Sample ID	1016123	1016125	1016125	1016127	1016128	1016115	1016115
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:55	12:55	13:07	13:15	11:21	11:21
	Sample Depth	0' - 2'	4' - 6'	4' - 6'	8' - 10'	10' - 12'	2' - 4'	2' - 4'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	AEL
	Lab. Number	AEL96010902	AEL96008140	96-3650-405	96-3651-406	96-3652-407	AEL96008141	AEL96010903
Constituent	Units							
Date Metals Analyzed			08/01/1996				08/01/1996	
Date Organics Analyzed	•			07/24/1996	07/24/1996	07/24/1996		
Date PCBs Analyzed	•							
Date Physical Analysed	-		1					
Date of Metals SPLP Analysis	-	10/24/1996						10/24/1996
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	•	10/16/1996						10/16/1996
Extraction Fluid No.	•	1						1
Arsenic	mg/kg						2.05	
Barium	mg/kg		16.7				14.2	
Barium (SPLP)	mg/L	1.55						
Cadmium	mg/kg							
Cadmium (TCLP)	mg/l							
Chromium	mg/kg						6.7	
Chromium (Total)	mg/kg							
Lead	mg/kg							
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L	0.0085						
Mercury	mg/kg							
Nickel	mg/kg							
Nickel (TCLP)	mg/l							
Silver	mg/kg							
Zinc	mg/kg		58.7				20.6	
Zine (TCLP)	mg/l							
Zinc (SPLP)	mg/L	0.118						0.118
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Total Petroleum Hydrocarbons	mg/kg							

Notes: 1. Only Detects Shown

Page 6 of 26

		·			·			1 age 0 01 20
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37
	Sample ID	1016123	1016125	1016125	1016127	1016128	1016115	1016115
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:55	12:55	13:07	13:15	11:21	11:21
***************************************	Sample Depth	0' - 2'	4' - 6'	4' - 6'	8' - 10'	10' - 12'	2' - 4'	2' - 4'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	AEL
	Lab. Number	AEL96010902	AEL96008140	96-3650-405	96-3651-406	96-3652-407	AEL96008141	AEL96010903
Constituent	Units							
Acetone	μg/kg							
Benzene (screening)	μg/kg							
Ethylbenzene (screening)	μg/kg							
Tetrachloroethylene	μg/kg							
Tetrachloroethylene (screening)	μg/kg							
Toluene (screening)	μg/kg							
Trichloroethylene (screening)	μg/kg			4 J	2 J	1 J		
Xylenes (Total)	μg/kg							
Xylenes (Total) (screening)	μg/kg							
		1						

Notes: 1. Only Detects Shown

Page 7 of 26

								1450 / 0120
	Location ID	NK-SB-37	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-39
	Sample ID	1016118	1016131	1016131	1016131	1016321	1016323	1016105
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/19/1996
	Sample Time	11:31	14:50	14:50	14:50	15:10	15:17	14:20
	Sample Depth	6' - 8'	0' - 2'	0' - 2'	0' - 2'	6' - 8'	10' - 12'	0' - 2'
	Laboratory	AEL	AEL	AEL	LEA	AEL	LEA	AEL
	Lab. Number	AEL96008142	AEL96008143	AEL96010904	96-3644-399	AEL96008144	96-3642-397	AEL96008145
Constituent	Units							
Date Metals Analyzed	-	08/01/1996	08/01/1996			08/01/1996		08/06/1996
Date Organics Analyzed	-				07/24/1996		07/24/1996	
Date PCBs Analyzed								
Date Physical Analysed	-					08/07/1996		08/07/1996
Date of Metals SPLP Analysis				10/24/1996				
Date of Metals TCLP Analysis								
Date of Other SPLP Analysis	-			10/16/1996				
Extraction Fluid No.				1				
Arsenic	mg/kg							
Barium	mg/kg	15.6	14.8			26.2		136
Barium (SPLP)	mg/L							
Cadmium	mg/kg							
Cadmium (TCLP)	mg/l							
Chromium	mg/kg	7.95	7.27			12.1		7.43
Chromium (Total)	mg/kg							
Lead	mg/kg							27.3
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg							
Nickel	mg/kg							
Nickel (TCLP)	mg/l							
Silver	mg/kg							
Zine	mg/kg	13.8	25.6			30.3		38.3
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L			0.205				
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Total Petroleum Hydrocarbons	mg/kg					55.8		257

Notes: 1. Only Detects Shown

Page 8 of 26

								1 450 0 01 2
	Location ID	NK-SB-37	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-39
	Sample ID	1016118	1016131	1016131	1016131	1016321	1016323	1016105
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/19/1996
-	Sample Time	11:31	14:50	14:50	14:50	15:10	15:17	14:20
	Sample Depth	6' - 8'	0' - 2'	0' - 2'	0' - 2'	6' - 8'	10' - 12'	0' - 2'
	Laboratory	AEL	AEL	AEL	LEA	AEL	LEA	AEL
	Lab. Number	AEL96008142	AEL96008143	AEL96010904	96-3644-399	AEL96008144	96-3642-397	AEL96008145
Constituent	Units							
Acetone	μg/kg							
Benzene (screening)	μg/kg							
Ethylbenzene (screening)	μg/kg						1390	
Tetrachloroethylene	μg/kg							
Tetrachloroethylene (screening)	μg/kg							
Toluene (screening)	μg/kg							
Trichloroethylene (screening)	μg/kg				4 J		1830 E	
Xylenes (Total)	μg/kg							
Xylenes (Total) (screening)	μg/kg							
	1							
-								
		<u>† </u>						
		1						
				 	1			
				 	 			
					 			
		 	-		 	+		
					+	+		

Notes: 1. Only Detects Shown

Page 9 of 26

								rage 9 01 2
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016105	1016108	1016108	1016088 -	1016088	1016092	1016092
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:59	14:59	10:00	10:00	10:45	10:45
	Sample Depth	0' - 2'	6' - 8'	6' - 8'	0' - 2'	0' - 2'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	AEL	AEL	AEL	LEA
	Lab. Number	AEL96010905	AEL96008146	96-3628-376	AEL96008135	AEL96010906	AEL96008136	96-3599-348
Constituent	Units							
Date Metals Analyzed	-		08/06/1996		08/01/1996		08/01/1996	
Date Organics Analyzed	-			07/24/1996				07/23/1996
Date PCBs Analyzed	•							
Date Physical Analysed	•				08/07/1996			
Date of Metals SPLP Analysis	-	10/24/1996				10/24/1996		
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	•	10/16/1996				10/16/1996		
Extraction Fluid No.	•	1				1		
Arsenic	mg/kg							
Barium	mg/kg		15.5		18.1		18.1	
Barium (SPLP)	mg/L	i i						
Cadmium	mg/kg							
Cadmium (TCLP)	mg/l							
Chromium	mg/kg		7.05		8.22		5.85	
Chromium (Total)	mg/kg							
Lead	mg/kg				26			
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L	0.0062						
Mercury	mg/kg				0.258			
Nickel	mg/kg							
Nickel (TCLP)	mg/l							
Silver	mg/kg	77 77 77 77 77 77 77 77 77 77 77 77 77						
Zinc	mg/kg		23.2		34.9		14.2	
Zinc (TCLP)	mg/l	<u></u>						
Zinc (SPLP)	mg/L	0.165				0.153		
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Total Petroleum Hydrocarbons	mg/kg				58.4			

Notes: 1. Only Detects Shown

Page 10 of 26

								1 400 10 01 10
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016105	1016108	1016108	1016088	1016088	1016092	1016092
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:59	14:59	10:00	10:00	10:45	10:45
	Sample Depth	0' - 2'	6' - 8'	6' - 8'	0' - 2'	0' - 2'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	AEL	AEL	AEL	LEA
	Lab. Number	AEL96010905	AEL96008146	96-3628-376	AEL96008135	AEL96010906	AEL96008136	96-3599-348
Constituent	Units							
Acetone	μg/kg							
Benzene (screening)	μg/kg							
Ethylbenzene (screening)	μg/kg							
Tetrachloroethylene	μg/kg		,					
Tetrachloroethylene (screening)	μg/kg							
Toluene (screening)	μg/kg							
Trichloroethylene (screening)	μg/kg			20 J				82
Xylenes (Total)	μg/kg							
Xylenes (Total) (screening)	μg/kg							
7								
		1						
		1						
			1					
· · · · · · · · · · · · · · · · · · ·								
		1	†	1				

Notes: 1. Only Detects Shown

Page 11 of 26

								1 age 11 01 20
	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-92	NK-SB-93	NK-SB-93
	Sample ID	1016097	1016097	1016100	1016100	1018884	1018892	1018893
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/08/1996	10/09/1996	10/09/1996
	Sample Time	11:50	11:50	12:25	12:25	15:00	10:40	10:45
	Sample Depth	0' - 2'	0' - 2'	6' - 8'	6' - 8'	6' - 8'	4' - 6'	6' - 8'
	Laboratory	AEL	AEL	AEL	LEA	LEA	AEL	AEL
	Lab. Number	AEL96008137	AEL96010907	AEL96008138	96-3608-357	96-5011-217	AEL96011568	AEL96011569
Constituent	Units							
Date Metals Analyzed	-	08/01/1996		08/01/1996				
Date Organics Analyzed					07/23/1996	10/09/1996		10/18/1996
Date PCBs Analyzed	-							
Date Physical Analysed		08/07/1996					10/23/1996	10/23/1996
Date of Metals SPLP Analysis	•		10/24/1996					
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-		10/16/1996					
Extraction Fluid No.			1					
Arsenic	mg/kg							
Barium	mg/kg	18		13.6				
Barium (SPLP)	mg/L		1.02					
Cadmium	mg/kg							
Cadmium (TCLP)	mg/l							
Chromium	mg/kg	7.94						
Chromium (Total)	mg/kg							
Lead	mg/kg							
Lead (TCLP)	mg/I							
Lead (SPLP)	mg/L		0.0052					
Mercury	mg/kg	0.276						
Nickel	mg/kg							
Nickel (TCLP)	mg/l							
Silver	mg/kg							
Zine	mg/kg	33.1		23.2				
Zinc (TCLP)	mg/l							
Zine (SPLP)	mg/L		0.229					
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Total Petroleum Hydrocarbons	mg/kg	55.8					309	287

Notes: 1. Only Detects Shown

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 1 of 306

								Fage 1 01 .
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041
Constituent	Units							
Date Metals Analyzed	-	11/15/1997	08/01/1996					08/01/1996
Date Organics Analyzed	-		07/30/1996		07/23/1996	07/23/1996	07/23/1996	07/30/1996
Date PCBs Analyzed	•	11/14/1997						
Date Physical Analysed	-		08/07/1996					08/07/1996
Date Semi-volatile Organics Analyzed	•		08/08/1996					08/08/1996
Date of Metals SPLP Analysis				10/24/1996	<u> </u>			
Date of Metals SPLP Extraction	-			<				
Date of Metals TCLP Analysis	•							
Date of Other SPLP Analysis	•			10/16/1996				
Extraction Fluid No.	-			1				
Dinoseb	μg/kg							
Arsenic	mg/kg	1.2	<1.18					<1.14
Arsenic (SPLP)	mg/L			<0.010				
Barium	mg/kg	29.6	9.34					12.1
Barium (SPLP)	mg/L			<1.00				
Beryllium	mg/kg							
Cadmium	mg/kg	1	<3.55					<3.41
Cadmium (TCLP)	mg/i							
Cadmium (SPLP)	mg/L			<0.0010				
Chromium	mg/kg	7.2	8.63					<5.68
Chromium (SPLP)	mg/L			<0.050				
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg	13	<23.6					<22.7
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L			<0.0050				
Mercury	mg/kg	0.19	<0.236					<0.227
Mercury (SPLP)	mg/L			<0.0020				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 2 of 306

		Page 2							
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	
	Sample ID	1641788	1016079	1016079	1016079 '	1016080	1016081	1016082	
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52	
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL	
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041	
Constituent	Units			 =					
Nickel	mg/kg	7.8	<11.8					<11.4	
Nickel (TCLP)	mg/l								
Nickel (SPLP)	mg/L			<0.10					
Selenium	mg/kg	<0.92 U	<1.18					<1.14	
Selenium (SPLP)	mg/L			<0.010					
Silver	mg/kg	<1.1 U	<5.91					<5.68	
Silver (SPLP)	mg/L			<0.020					
Zinc	mg/kg	29.1	20.2					25.4	
Zinc (TCLP)	mg/l								
Zinc (SPLP)	mg/L			<0.050					
PCB 1016	μg/kg	<18 U							
PCB 1221	μg/kg	<11 U							
PCB 1232	μg/kg	<16 U							
PCB 1242	μg/kg	<3.8 U							
PCB 1248	μg/kg	<2.9 U							
PCB 1254	μg/kg	<3.8 U							
PCB 1260	μg/kg	<14 U							
Acetylaminofluorene,2-	μg/kg								
Aramite	μg/kg								
Dibromo-3-chloropropane, 1,2-	μg/kg					_			
Dimethoate	μg/kg								
Disulfoton	μg/kg								
Famphur	μg/kg								
Phorate	μg/kg								
Total Petroleum Hydrocarbons	mg/kg		<39.3					<39.9	
Acenaphthene	μg/kg		<390					<400	
Acenaphthylene	μg/kg		<390					<400	
Acetophenone	μg/kg			T					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 3 of 306

								Page 3 of 3
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg		<390					<400
Benzidine	μg/kg		<390					<400
Benzo[a]anthracene	μg/kg		<390 N1					<400
Benzo[a]pyrene	μg/kg		<390 N1					<400
Benzo[b]fluoranthene	μg/kg		<390 N1					<400
Benzo[ghi]perylene	μg/kg		<390					<400
Benzo[k]fluoranthene	μg/kg		<390 N1					<400
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg		<390					<400
Bis(2-chloroethyl) Ether	μg/kg	<u></u>	<390					<400
Bis(2-ethylhexyl) Phthalate	μg/kg		<390					<400
Bromophenyl Phenyl Ether,4-	μg/kg		<390					<400
Butyl Benzyl Phthalate	μg/kg	<u> </u>	<390					<400
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene.2-	μg/kg		<390					<400
Chlorophenol,2-	μg/kg		<390					<400
Chlorophenyl Phenyl Ether,4-	μg/kg		<390					<400
Chrysene	μg/kg		<390 N1					<400
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg		<390					<400
Di-n-octyl Phthalate	μg/kg		<390					<400

Page 4 of 306

								Page 4 of 1
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg		<390					<400
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg		<390					<400
Dichlorophenol,2,4-	μg/kg		<390					<400
Diethyl Phthalate	μg/kg		<390					<400
Dimethyl Phthalate	μg/kg		<390					<400
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg		<390					<400
Dinitro-o-cresol,4,6-	μg/kg		<390					<400
Dinitrobenzene, 1,3-	μg/kg							
Dinitrophenol,2.4-	μg/kg		<390					<400
Dinitrotoluene,2,4-	μg/kg		<390					<400
Dinitrotoluene,2,6-	μg/kg		<390					<400
Diphenylamine	μg/kg							
Diphenylhydrazine, 1.2-	μg/kg		<390					<400
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg		<390 N1					<400
Fluorene	μg/kg		<390					<400
Hexachlorobenzene	μg/kg		<390					<400
Hexachlorobutadiene	μg/kg		<390	<u> </u>				<400
Hexachlorocyclopentadiene	μg/kg		<390					<400
Hexachloroethane	μg/kg		<390					<400
Hexachloropropylene	μg/kg						-	
Indeno(1,2,3-cd)pyrene	μg/kg		<390 N1					<400

Page 5 of 306

		Page							
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082	
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52	
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL	
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041	
Constituent	Units								
Isophorone	μg/kg		<390					<400	
Isosafrole	μg/kg								
Methapyrilene	μg/kg	1							
Methyl Methanesulfonate	μg/kg								
Methylcholanthrene,3-	μg/kg								
Methylnaphthalene,2-	μg/kg								
N-nitroso-di-n-butylamine	μg/kg								
N-nitroso-n-propylamine	μg/kg		<390					<400	
N-nitrosodiethylamine	μg/kg								
N-nitrosodimethylamine	μg/kg		<390					<400	
N-nitrosodiphenylamine	μg/kg		<390					<400	
N-nitrosomethylethylamine	μg/kg								
N-nitrosomorpholine	μg/kg								
N-nitrosopiperidine	μg/kg								
Naphthalene	μg/kg		<390					<400	
Naphthoquinone,1,4-	μg/kg								
Naphthylamine,alpha-	μg/kg								
Naphthylamine,beta-	μg/kg								
Nitro-o-toluidine,5-	μg/kg				-				
Nitroaniline,2-	μg/kg								
Nitroaniline.3-	μg/kg								
Nitroaniline,4-	μg/kg								
Nitrobenzene	μg/kg		<390					<400	
Nitrophenol,2-	μg/kg		<390					<400	
Nitrophenol,4-	μg/kg]	<390					<400	
Nitroquinoline-1-oxide,4-	μg/kg								
Nitrosopyrrolidine.n-	μg/kg								
Pentachlorophenol	μg/kg		<390	•				<400	

Page 6 of 306

								Page 6 of 3
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL
_	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg		<390					<400
Phenol	μg/kg		<390					<400
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg		<390					<400
Pyrene	μ g /kg		<390 N1					<400
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μ g/k g							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg		<390					<400
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg		<390					<400
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μ g/ kg		<45					<71
Acetonitrile	μg/kg							
Acrolein	μg/kg		<18					<18
Acrylonitrile	μg/kg		<18					<18
Allyl Chloride	μg/kg							
Benzene	μg/kg		<7.2					<7.1
Benzene (screening)	μg/kg				<17 nc	<16 nc	<16	
Bromobenzene	μg/kg		<7.2					<7.1
Bromoform	μg/kg		<7.2					<7.1

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 7 of 306

				NK-MW-19				Page / or	
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082	
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52	
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL	
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041	
Constituent	Units								
Carbon Disulfide	μg/kg		<7.2					<7.1	
Carbon Tetrachloride	μg/kg		<7.2					<7.1	
Chlorobenzene	μg/kg		<7.2					<7.1	
Chlorodibromomethane	μg/kg		<7.2					<7.1	
Chloroethane	μg/kg		<7.2					<7.1	
Chloroethyl Vinyl Ether,2-	μg/kg		<7.2					<7.1	
Chloroform	μg/kg		<7.2					<7.1	
Chloroprene, beta-	μg/kg								
Chlorotoluene,o-	μg/kg		<7.2					<7.1	
Chlorotoluene,p-	μg/kg		<7.2					<7.1	
Dibromomethane	μg/kg		<7.2			`		<7.1	
Dichlorobenzene, 1,2-	μg/kg		<7.2					<7.1	
Dichlorobenzene,1,3-	μg/kg		<7.2					<7.1	
Dichlorobenzene, 1.4-	μg/kg		<7.2					<7.1	
Dichlorobromomethane	μg/kg	<u> </u>	<7.2					<7.1	
Dichlorodifluoromethane	μg/kg	<u> </u>	<7.2					<7.1	
Dichloroethane, 1, 1-	μg/kg		<7.2					<7.1	
Dichloroethane, 1,2-	μg/kg		<7.2					<7.1	
Dichloroethylene,1,1-	μg/kg		<7.2					<7.1	
Dichloroethylene,1,2-	μg/kg								
Dichloroethylene,1,2-cis-	μg/kg		<7.2					<7.1	
Dichloroethylene, 1, 2-trans-	μg/kg		<7.2					<7.1	
Dichloropropane, 1,2-	μg/kg		<7.2					<7.1	
Dichloropropylene, 1,3-	μg/kg								
Dichloropropylene, 1,3-cis-	μg/kg		<7.2					<7.1	
Dichloropropylene, 1,3-trans-	μg/kg		<7.2					<7.1	
Dioxane,1,4-	μg/kg								
Ethyl Methacrylate	μg/kg								

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 8 of 306

								Page 8 of
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041
Constituent	Units							
Ethylbenzene	μg/kg		<7.2					<7.1
Ethylbenzene (screening)	μg/kg				<24 nc	<24 nc	<23	
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg		<18					<18
lodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg		<7.2					<7.1
Methyl Chloride	μ g/ kg		<7.2					<7.1
Methyl Ethyl Ketone	μg/kg		<18					<18
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg		<18					<18
Methyl-tert-butyl Ether	μg/kg		<7.2					<7.1
Methylene Chloride	μg/kg		<14					<7.1
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg		<7.2					<7.1
Tetrachloroethane, 1, 1, 1, 2-	μg/kg		<7.2					<7.1
Tetrachloroethane, 1, 1, 2, 2-	μg/kg		<7.2					<7.1
Tetrachloroethylene	μg/kg		<7.2					<7.1
Tetrachloroethylene (screening)	μg/kg				<25 nc	<25 nc	<24	
Foluene	μg/kg		<7.2					<7.1
Toluene (screening)	μg/kg				<23 nc	<23 nc	<22	
Frichloroethane, 1, 1, 1-	μg/kg		<7.2					<7.1
Frichloroethane, 1, 1, 1- (screening)	μg/kg				<406 nc	<398 nc	<382	
Frichloroethane, 1, 1.2-	μg/kg		<7.2					<7.1

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 9 of 306

	Page									
	Location ID	MIDDWELL-W	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19		
	Sample ID	1641788	1016079	1016079	1016079	1016080	1016081	1016082		
	Sample Date	11/11/1997	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996		
	Sample Time	08:35	13:26	13:26	13:26	13:31	13:36	13:52		
	Sample Depth		0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'		
	Laboratory	accu	AEL	AEL	LEA	LEA	LEA	AEL		
	Lab. Number	E27722-2	AEL96008040	AEL96010908	96-3583-330	96-3584-331	96-3585-332	AEL96008041		
Constituent	Units									
Trichloroethylene	μg/kg		<7.2					<7.1		
Trichloroethylene (screening)	μg/kg				<39 nc	<39 nc	<37			
Trichloromonotluoromethane	μg/kg		<7.2					<7.1		
Trichloropropane, 1, 2, 3-	μg/kg		<7.2					<7.1		
Vinyl Acetate	μg/kg		<7.2					<7.1		
Vinyl Chloride	μg/kg		<7.2					<7.1		
Xylene,o- (screening)	μg/kg									
Xylenes (Total)	μg/kg		<7.2					<7.1		
Xylenes (Total) (screening)	μg/kg									
Xylenes,m- & p- (screening)	μg/kg									
			-							
			-	-						
		1	1	+		 				

Page 10 of 306

								Page 10 of 3
	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units							
Date Metals Analyzed	•							
Date Organics Analyzed	-	07/23/1996	07/23/1996	07/23/1996	07/23/1996	07/23/1996	10/15/1996	10/15/1996
Date PCBs Analyzed	-							
Date Physical Analysed	-							
Date Semi-volatile Organics Analyzed	-							
Date of Metals SPLP Analysis	-							
Date of Metals SPLP Extraction	-							
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-							
Extraction Fluid No.	-							
Dinoseb	μg/kg							
Arsenic	mg/kg							
Arsenic (SPLP)	mg/L							
Barium	mg/kg	:						
Barium (SPLP)	mg/L							
Beryllium	mg/kg							
Cadmium	mg/kg							
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L							
Chromium	mg/kg							
Chromium (SPLP)	mg/L							
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
I.ead	mg/kg							
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg							
Mercury (SPLP)	mg/L	1						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 11 of 306

								Page 11 of 306
	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085 '	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units							
Nickel	mg/kg							
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg							
Selenium (SPLP)	mg/L							
Silver	mg/kg							
Silver (SPLP)	mg/L							
Zinc	mg/kg							
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg	1						
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg							
Acenaphthene	μg/kg							
Acenaphthylene	μg/kg							
Acetophenone	μg/kg							
		1						

Page 12 of 306

	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg							
Benzidine	μg/kg							
Benzo[a]anthracene	μg/kg							
Benzo[a]pyrene	μg/kg							
Benzo[b]fluoranthene	μg/kg							
Benzo[ghi]perylene	μg/kg							
Benzo[k]fluoranthene	μg/kg							
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg							
Bis(2-chloroethyl) Ether	μg/kg							
Bis(2-ethylhexyl) Phthalate	μg/kg							
Bromophenyl Phenyl Ether,4-	μg/kg							
Butyl Benzyl Phthalate	μg/kg							
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg							
Chlorophenol,2-	μg/kg							
Chlorophenyl Phenyl Ether,4-	μg/kg	<u> </u>						
Chrysene	μg/kg							
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg							
Di-n-octyl Phthalate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 13 of 306

								rage 13 of 3
	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg							
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg							
Dichlorophenol,2,4-	μg/kg							
Diethyl Phthalate	μg/kg							
Dimethyl Phthalate	μg/kg			·				[.
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg							
Dinitro-o-cresol,4,6-	μg/kg							
Dinitrobenzene.1.3-	μg/kg							
Dinitrophenol,2.4-	μg/kg							
Dinitrotoluene,2,4-	µg/kg							
Dinitrotoluene,2,6-	μg/kg							
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg							
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg	1						
Fluorene	μg/kg							
Hexachlorobenzene	μg/kg							
Hexachlorobutadiene	μg/kg							
Hexachlorocyclopentadiene	μg/kg							
Hexachloroethane	μg/kg							
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg							

Page 14 of 306

								Page 14 of 3
	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085 '	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units	† · · · · · · · · · · · · · · · · · · ·						
Isophorone	μg/kg							
Isosatrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propytamine	μg/kg							
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg							
N-nitrosodiphenylamine	μg/kg							
N-nitrosomethylethylamine	μg/kg	1						
N-nitrosomorpholine	μg/kg	I						
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg							
Naphthoquinone,1,4-	μg/kg	<u> </u>						
Naphthylamine.alpha-	μg/kg							
Naphthylamine.beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg							
Nitrophenol,2-	μg/kg							
Nitrophenol,4-	μg/kg							
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 15 of 306

	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg	<u> </u>						
Phenol	μg/kg							
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg							
Pyrene	μg/kg							
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene.1,2,4,5-	μg/kg							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1.2.4-	μg/kg							
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol.2,4,6-	μg/kg							
Triethyl Phosphorothioate.o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg							
Acetonitrile	μg/kg					ļ		
Acrolein	μg/kg							
Aerylonitrile	μg/kg							
Allyl Chloride	μg/kg							
Benzene	μg/kg							
Benzene (screening)	μg/kg	<12	<15	<12	<14	<14	<8 nc	<7
Bromobenzene	μg/kg							
Bromoform	μg/kg	1						

LEΔ

Page 16 of 306

								Tage 10 of
	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085 '	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units							
Carbon Disulfide	μg/kg							
Carbon Tetrachloride	μg/kg							
Chlorobenzene	μg/kg							
Chlorodibromomethane	μg/kg		1					
Chloroethane	μg/kg							
Chloroethyl Vinyl Ether,2-	μg/kg							
Chloroform	μg/kg							
Chloroprene,beta-	μg/kg							
Chlorotoluene,o-	μg/kg							
Chlorotoluene,p-	μg/kg							
Dibromomethane	μg/kg	l						
Dichlorobenzene,1,2-	μg/kg							
Dichlorobenzene,1,3-	μg/kg							
Dichlorobenzene, 1,4-	μg/kg							
Dichlorobromomethane	μg/kg							
Dichlorodifluoromethane	μg/kg							
Dichloroethane, 1, 1-	μg/kg							
Dichloroethane, 1,2-	μg/kg							
Dichloroethylene, 1, 1-	μg/kg							
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene, 1, 2-cis-	μg/kg							
Dichloroethylene,1,2-trans-	μg/kg							
Dichloropropane, 1, 2-	μg/kg							
Dichloropropylene, 1.3-	μg/kg							
Dichloropropylene, 1,3-cis-	μg/kg							
Dichloropropylene, 1,3-trans-	μg/kg							
Dioxane,1,4-	μg/kg							
Ethyl Methacrylate	μg/kg	1						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 17 of 306

								Page 17 of
	Location ID	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-MW-19	NK-SB-200	NK-SB-200
	Sample ID	1016082	1016083	1016084	1016085	1016086	1019372	1019373
	Sample Date	07/18/1996	07/18/1996	07/18/1996	07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Sample Time	13:52	13:52	14:00	14:10	14:20	11:10	11:20
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
Constituent	Units							
Ethylbenzene	μg/kg							
Ethylbenzene (screening)	μg/kg	<18	<22	<18	<20	<20	<18 nc	<14
Ethylene Dibromide	μg/kg							
Hexanone,2-	րը∕kg							
lodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg							
Methyl Chloride	μg/kg							
Methyl Ethyl Ketone	μg/kg							
Methyl Methacrylate	μg/kg	<u> </u>						
Methyl-2-pentanone,4-	μg/kg							
Methyl-tert-butyl Ether	μg/kg							
Methylene Chloride	μg/kg							
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg							
Tetrachloroethane, 1, 1, 1, 2-	μg/kg							
Tetrachloroethane, 1, 1, 2, 2-	μg/kg							
Tetrachioroethylene	μg/kg							
Tetrachloroethylene (screening)	μg/kg	<18	<23	<19	<21	<21	<23 nc	<18
Toluene	μg/kg							
Toluene (screening)	μg/kg	<17	<21	<17	<19	<20	<13 nc	<10
Trichloroethane, 1, 1, 1-	μg/kg							
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<295	<368	<300	<336	<342	<229 nc	<179
Trichloroethane, 1, 1, 2-	μg/kg							

Page 18 of 306

	Location ID Sample ID Sample Date Sample Time Sample Depth Laboratory	NK-MW-19 1016082 07/18/1996 13:52 6' - 8'	NK-MW-19 1016083 07/18/1996 13:52	NK-MW-19 1016084 07/18/1996	NK-MW-19 1016085 '	NK-MW-19 1016086	NK-SB-200 1019372	NK-SB-200 1019373
	Sample Date Sample Time Sample Depth Laboratory	07/18/1996 13:52	07/18/1996				1019372	1019373
	Sample Time Sample Depth Laboratory	13:52		07/18/1996	07/19/1007			
	Sample Depth Laboratory		13:52		07/18/1996	07/18/1996	10/14/1996	10/14/1996
	Laboratory	6' - 8'	1	14:00	14:10	14:20	11:10	11:20
	·	0 - 0	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'
		LEA	LEA	LEA	LEA	LEA	LEA	LEA
Constituent	Lab. Number	96-3597-333	96-3586-334	96-3587-335	96-3588-336	96-3589-337	96-5092-336	96-5093-337
	Units							
Trichloroethylene	μg/kg	I						
Trichloroethylene (screening)	μg/kg	<29	<36	<29	<33	<33	<23 nc	<18
Trichloromonofluoromethane	μg/kg							
Trichloropropane,1,2,3-	μg/kg							
Vinyl Acetate	μg/kg							
Vinyl Chloride	μg/kg							
Xylene,o- (screening)	μg/kg						<24 nc	<19
Xylenes (Total)	μg/kg							
Xylenes (Total) (screening)	μg/kg						<36 nc	<28
Xylenes,m- & p- (screening)	μg/kg						<12 nc	<9
	-							
						-		
							<u> </u>	
			†		 		 	
							 	
			 		 			
								
				+	 			
							+	
		<u> </u>						
				+				
								
		· · · · · · · · · · · · · · · · · · ·	 	 	+		- 	-
		 	 	 	 	 	+	+
		<u> </u>				 	-	-
						-		
	<u> </u>	 	 	 			+	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 19 of 306

								Page 19 01 30
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
-	Sample ID	1019374	1019374	1019375	1019376	1019377	1019378	1016026
· · · · · · · · · · · · · · · · · · ·	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Date Metals Analyzed	-							
Date Organics Analyzed	-	10/22/1996	10/15/1996	10/15/1996	10/15/1996	10/15/1996	10/15/1996	07/18/1996
Date PCBs Analyzed	-			<u> </u>				
Date Physical Analysed	-	10/28/1996						
Date Semi-volatile Organics Analyzed	-	10/29/1996						
Date of Metals SPLP Analysis	•							
Date of Metals SPLP Extraction	-							
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-							
Extraction Fluid No.	-							
Dinoseb	μg/kg							
Arsenic	mg/kg							
Arsenic (SPLP)	mg/L							
Barium	mg/kg							
Barium (SPLP)	mg/L							
Beryllium	mg/kg							
Cadmium	mg/kg							
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L							
Chromium	mg/kg							
Chromium (SPLP)	mg/L							
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg							
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg							
Mercury (SPLP)	mg/L							

Page 20 of 306

								Page 20 of .
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
	Sample ID	1019374	1019374	1019375	1019376	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Nickel	mg/kg							
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg							
Selenium (SPLP)	mg/L							
Silver	mg/kg							
Silver (SPLP)	mg/L							
Zine	mg/kg							
Zine (TCLP)	mg/l							
Zine (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg		_					
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg	<36.8						
Acenaphthene	μg/kg	<370						
Acenaphthylene	μg/kg	<370						
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 21 of 306

								Page 21 of 3
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
	Sample ID	1019374	1019374	1019375	1019376 '	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg	<370						
Benzidine	μg/kg	<370						
Benzo[a]anthracene	μg/kg	<370						
Benzo[a]pyrene	μg/kg	<370						
Benzo[h]fluoranthene	μg/kg	<370						
Benzo[ghi]perylene	μg/kg	<370						
Benzo[k]fluoranthene	μg/kg	<370						
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg	<370						
Bis(2-chloroethyl) Ether	μg/kg	<370						
Bis(2-ethylhexyl) Phthalate	μg/kg	<370						
Bromophenyl Phenyl Ether,4-	μg/kg	<370						
Butyl Benzyl Phthalate	μg/kg	<370						
Carbazole	μg/kg							
Chloro-m-cresol.p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg	<370						
Chlorophenol,2-	μg/kg	<370						
Chlorophenyl Phenyl Ether,4-	μg/kg	<370						
Chrysene	μg/kg	<370						
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg	<370						
Di-n-octyl Phthalate	μg/kg	<370						

Page 22 of 306

								Page 22 01 3
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
	Sample ID	1019374	1019374	1019375	1019376 '	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg	<370						
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg	<370						
Dichlorophenol,2,4-	μg/kg	<370						
Diethyl Phthalate	μg/kg	<370						
Dimethyl Phthalate	μg/kg	<370						
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg	<370						
Dinitro-o-cresol,4,6-	μg/kg	<370						
Dinitrobenzene, 1,3-	μg/kg							
Dinitrophenol,2.4-	μg/kg	<370						
Dinitrotoluene,2.4-	μg/kg	<370						
Dinitrotoluene, 2, 6-	μg/kg	<370						
Diphenylamine	μg/kg							
Diphenylhydrazine, 1,2-	μg/kg	<370						
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg	<370						
Fluorene	μg/kg	<370						
Hexachlorobenzene	μg/kg	<370						
Hexachlorobutadiene	μg/kg	<370						
Hexachlorocyclopentadiene	μg/kg	<370						
Hexachloroethane	μg/kg	<370						
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg	<370						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 23 of 306

								Fage 23 01
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
	Sample ID	1019374	1019374	1019375	1019376 '	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Isophorone	μg/kg	<370						
Isosafrole	μg/kg						-	
Methapyrilene	μg/kg							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg	<370						
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg	<370						
N-nitrosodiphenylamine	μg/kg	<370						
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg	<370						
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine,alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg	<370						
Nitrophenol,2-	μg/kg	<370						
Nitrophenol,4-	μg/kg	<370						
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg	<370						

Page 24 of 306

								Page 24 of 306
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
**************************************	Sample ID	1019374	1019374	1019375	1019376 +	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg	<370						
Phenol	μg/kg	<370						
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg	<370						
Pyrene	μg/kg	<370						
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1.2.4,5-	μg/kg							
Tetrachlorophenol,2,3,4.6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene 1.2.4-	μg/kg	<370						
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg	<370						
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg	<22						
Acetonitrile	μg/kg							
Acrolein	μg/kg	<11						
Acrylonitrile	μg/kg	<11						
Allyl Chloride	μg/kg							
Benzene	μg/kg	<4.5						
Benzene (screening)	μg/kg		<8	<8	<7	<7	<7	<15
Bromobenzene	μg/kg	<4.5						
Bromoform	μg/kg	<4.5						
		I						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 25 of 306

								Page 25 of
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
	Sample ID	1019374	1019374	1019375	1019376	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
* ****	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Carbon Disulfide	μg/kg	<4.5						
Carbon Tetrachloride	μg/kg	<4.5						
Chlorobenzene	μg/kg	<4.5						
Chlorodibromomethane	μg/kg	<4.5						
Chloroethane	μg/kg	<4.5						
Chloroethyl Vinyl Ether,2-	μg/kg	<4.5						
Chloroform	μg/kg	<4.5						
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg	<4.5						
Chlorotoluene,p-	μg/kg	<4.5						
Dibromomethane	μg/kg	<4.5						
Dichlorobenzene, 1,2-	μg/kg	<4.5						
Dichlorobenzene, 1,3-	μg/kg	<4.5						
Dichlorobenzene, 1,4-	μg/kg	<4.5						
Dichlorobromomethane	μg/kg	<4.5						
Dichlorodifluoromethane	μg/kg	<4.5						
Dichloroethane, 1,1-	μg/kg	<4.5						
Dichloroethane.1,2-	μg/kg	<4.5						
Dichloroethylene,1,1-	μg/kg	<4.5						
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene.1,2-cis-	μg/kg	<4.5						
Dichloroethylene,1,2-trans-	μg/kg	<4.5						
Dichloropropane.1.2-	μg/kg	<4.5						
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene, 1,3-cis-	μg/kg	<4.5						
Dichloropropylene, 1, 3-trans-	μg/kg	<4.5						
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Page 26 of 306

								Page 26 of 3
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
	Sample ID	1019374	1019374	1019375	1019376	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Ethylbenzene	µg/kg	<4.5						
Ethylbenzene (screening)	րց/kg		<16	<16	<16	<14	<14	
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg	<11						
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg	<4.5						
Methyl Chloride	μg/kg	<4.5						
Methyl Ethyl Ketone	μg/kg	<11						
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg	<11						
Methyl-tert-butyl Ether	μg/kg	<4.5						
Methylene Chloride	μg/kg	<4.5						
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg	<4.5						
Tetrachloroethane, 1, 1, 1, 2-	μg/kg	<4.5						
Tetrachloroethane, 1, 1, 2, 2-	μg/kg	<4.5						
Tetrachloroethylene	μg/kg	<4.5						
Tetrachloroethylene (screening)	μg/kg		<21	<20	<20	<18	<18	<23
Toluene	μg/kg	<4.5						
Toluene (screening)	μg/kg		<12	<11	<11	<10	<10	<21
Trichloroethane, 1, 1, 1-	μg/kg	<4.5						
Trichloroethane, 1, 1, 1- (screening)	μg/kg		<207	<203	<195	<179	<176	<361
Trichloroethane, 1, 1, 2-	μg/kg	<4.5						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 27 of 306

								Page 27 of
	Location ID	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-200	NK-SB-30
	Sample ID	1019374	1019374	1019375	1019376	1019377	1019378	1016026
	Sample Date	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	10/14/1996	07/16/1996
	Sample Time	11:35	11:35	11:45	11:50	12:00	12:10	13:50
	Sample Depth	4' - 6'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96011851	96-5094-338	96-5095-339	96-5096-340	96-5097-341	96-5098-343	96-3504-237
Constituent	Units							
Trichloroethylene	μg/kg	<4.5						
Trichloroethylene (screening)	μg/kg		<20	<20	<19	<18	<17	<35
Trichloromonofluoromethane	μg/kg	<4.5						
Trichloropropane, 1, 2, 3-	μg/kg	<4.5	1					
Vinyl Acetate	μg/kg	<4.5						
Vinyl Chloride	μg/kg	<4.5						
Xylene,o- (screening)	μg/kg		<22	<22	<21	<19	<19	
Xylenes (Total)	μg/kg	<4.5						
Xylenes (Total) (screening)	μg/kg		<33	<32	<31	<28	<28	
Xylenes,m- & p- (screening)	μg/kg		<11	<11	<10	<9	<9	
		1			-			
		<u> </u>						
			 			_		

Page 28 of 306

								Page 28 of 30
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028 '	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Date Metals Analyzed	-	07/29/1996				07/29/1996		
Date Organics Analyzed	-	07/29/1996		07/19/1996	07/19/1996	07/29/1996	07/19/1996	07/19/1996
Date PCBs Analyzed	-							
Date Physical Analysed	-	08/06/1996	1			08/06/1996		
Date Semi-volatile Organics Analyzed	-	08/09/1996				08/09/1996		
Date of Metals SPLP Analysis	•		10/17/1996					
Date of Metals SPLP Extraction	•		<					
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis			10/09/1996					
Extraction Fluid No.	-		1					
Dinoseb	μg/kg							
Arsenic	mg/kg	<1.05				<1.28		
Arsenic (SPLP)	mg/L	<u> </u>	<0.010					
Barium	mg/kg	9.05				10.4		
Barium (SPLP)	mg/L		<1.00					
Beryllium	mg/kg							
Cadmium	mg/kg	<3.16				<3.84		
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L		<0.0010					
Chromium	mg/kg	6.53				<6.4		
Chromium (SPLP)	mg/L		<0.050					
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l			_				
Lead	mg/kg	<21.1				<25.6		
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L		<0.0050					
Mercury	mg/kg	<0.211				<0.256		
Mercury (SPLP)	mg/L		<0.0020					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 29 of 306

								Page 29 of 30
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Nickel	mg/kg	<10.5				<12.8		
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L		<0.10					
Selenium	mg/kg	<1.05				<1.28		
Selenium (SPLP)	mg/L		<0.010					
Silver	mg/kg	<5.26				<6.4		
Silver (SPLP)	mg/L		<0.020					
Zinc	mg/kg	10				9.22		
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L		<0.050					
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg					_		
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg	<35.7				681		
Acenaphthene	μg/kg	<360				<1200		
Acenaphthylene	μg/kg	<360				<1300		
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 30 of 306

								Page 30 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg					1		
Anthracene	μg/kg	<360				<1300		
Benzidine	μg/kg	<360				<1300		
Benzo[a]anthracene	μg/kg	<360				<1300		
Benzo[a]pyrene	μg/kg	<360				<1300		
Benzo[b]fluoranthene	μg/kg	<360				<1300		
Benzo[ghi]perylene	μg/kg	<360				<1300		
Benzo[k]fluoranthene	μg/kg	<360				<1300		
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg	<360				<1300		
Bis(2-chloroethyl) Ether	μg/kg	<360				<1300		
Bis(2-ethylhexyl) Phthalate	μg/kg	<360				<1300		
Bromophenyl Phenyl Ether,4-	μg/kg	<360				<1300		
Butyl Benzyl Phthalate	μg/kg	<360				<1300		
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg	<360				<1300		
Chlorophenol,2-	μg/kg	<360				<1300		
Chlorophenyl Phenyl Ether,4-	μg/kg	<360				<1300		
Chrysene	μg/kg	<360				<1300		
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg	<360				<1300		
Di-n-octyl Phthalate	μg/kg	<360				<1300		

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 31 of 306

								Page 31 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
· · · · · · · · · · · · · · · · · · ·	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg	<360				<1300		
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg	<360				<1300		
Dichlorophenol,2,4-	μg/kg	<360				<1300		
Diethyl Phthalate	μg/kg	<360				<1300		
Dimethyl Phthalate	μg/kg	<360				<1300		
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg	<360				<1300		
Dinitro-o-cresol,4,6-	μg/kg	<360				<1300		
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol, 2.4-	μg/kg	<360				<1300		
Dinitrotoluene, 2.4-	μg/kg	<360				<1300		
Dinitrotoluene,2.6-	μg/kg	<360				<1300		
Diphenylamine	μg/kg							
Diphenylhydrazine,1.2-	μg/kg	<360				<1300		
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg	<360				<1300		
Fluorene	μg/kg	<360				<1300		
Hexachlorobenzene	μg/kg	<360				<1300		
Hexachlorobutadiene	μg/kg	<360				<1300		
Hexachlorocyclopentadiene	μg/kg	<360				<1300		
Hexachloroethane	μg/kg	<360				<1300		
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg	<360				<1300		

Page 32 of 306

								Page 32 of 30
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028 '	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Isophorone	μg/kg	<360				<1300		
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg	<360				<1300		
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg	<360				<1300		
N-nitrosodiphenylamine	μg/kg	<360				<1300		
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg	<360				<1300		
Naphthoquinone,1,4-	μg/kg							
Naphthylamine,alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine.5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg	<360				<1300		
Nitrophenol,2-	μg/kg	<360				<1300		
Nitrophenol,4-	μg/kg	<360				<1300		
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg	<360				<1300		

Page 33 of 306

								Page 33 of 30
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg	<360				<1300		
Phenol	μg/kg	<360				<1300		
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg	<360				<1300		
Pyrene	μg/kg	<360				<1300		
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg							
Toluidine,o-	μg/kg	.						
Trichlorobenzene,1,2,4-	μg/kg	<360				<1300		
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg	<360				<1300		
Triethyl Phosphorothioate.o.o.o-	μg/kg			ļ				
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg	<2000				<2700		
Acetonitrile	μg/kg							
Acrolein	μg/kg	<990				<1300		
Acrylonitrile	μg/kg	<990				<1300		
Allyl Chloride	μg/kg							
Benzene	μg/kg	<400				<530		
Benzene (screening)	μg/kg			<15	<16 nc		<16	<16
Bromobenzene	μg/kg	<400				<530		
Bromoform	μg/kg	<400				<530		
1 Pint J - 0/ (20/09)								

Page 34 of 306

								Page 34 of .
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028 '	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Carbon Disulfide	μg/kg	<400				<530		
Carbon Tetrachloride	μg/kg	<400				<530		
Chlorobenzene	μg/kg	<400				<530		
Chlorodibromomethane	μg/kg	<400				<530		
Chloroethane	μg/kg	<400				<530		
Chloroethyl Vinyl Ether,2-	μg/kg	<400				<530		
Chloroform	μg/kg	<400				<530		
Chloroprene,beta-	μg/kg							
Chlorotoluene,o-	μg/kg	<400				<530		
Chlorotoluene,p-	μg/kg	<400				<530		
Dibromomethane	μg/kg	<400				<530		
Dichlorobenzene,1,2-	μg/kg	<400				<530		
Dichlorobenzene, 1,3-	μg/kg	<400				<530		
Dichlorobenzene.1,4-	μg/kg	<400				<530		
Dichlorobromomethane	μg/kg	<400				<530		
Dichlorodifluoromethane	μg/kg	<400				<530		
Dichloroethane, 1.1-	μg/kg	<400				<530		
Dichloroethane, 1.2-	μg/kg	<400				<530		
Dichloroethylene,1,1-	μg/kg	<400				<530		
Dichloroethylene.1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg	<400				<530		
Dichloroethylene,1,2-trans-	μg/kg	<400				<530		
Dichloropropane, 1,2-	μg/kg	<400				<530		
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene,1,3-cis-	μg/kg	<400				<530		
Dichloropropylene, 1,3-trans-	μg/kg	<400				<530		
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg	-						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 35 of 306

								Page 35 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Ethylbenzene	μg/kg	<400				<530		
Ethylbenzene (screening)	μg/kg						<34	
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg	<990				<1300		
Iodomethane	μg/kg							
Isobutyi Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg	<400				<530		
Methyl Chloride	μg/kg	<400				<530		
Methyl Ethyl Ketone	μg/kg	<990				<1300		
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg	<990				<1300		
Methyl-tert-butyl Ether	μg/kg	<400				<530		
Methylene Chloride	μg/kg	<400				<530		
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg	<400				<530		
Tetrachloroethane, 1, 1, 1, 2-	μg/kg	<400				<530		
Tetrachloroethane, 1, 1, 2, 2-	μg/kg	<400				<530		
Tetrachloroethylene	μg/kg	<400				<530		
Tetrachloroethylene (screening)	μg/kg			<23	<25 nc		<43	<24
Toluene	μg/kg	<400				<530		
Toluene (screening)	μg/kg			<22	<23 nc		- 24	√22
Trichloroethane, 1, 1, 1-	μg/kg	<400				<530		
Trichloroethane.1,1,1- (screening)	μg/kg			<375	<398 nc		<430	<382
Trichloroethane, 1, 1, 2-	μg/kg	<400				<530		

Page 36 of 306

								Page 36 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-30
	Sample ID	1016027	1016027	1016027	1016028	1016029	1016029	1016030
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
-	Sample Time	14:00	14:00	14:00	14:10	14:20	14:20	14:35
	Sample Depth	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'
	Laboratory	AEL	AEL	LEA	LEA	AEL	LEA	LEA
	Lab. Number	AEL96007934	AEL96010896	96-3508-243	96-3509-246	AEL96007935	96-3507-243	96-3510-247
Constituent	Units							
Trichloroethylene	μg/kg	<400				<530		
Trichloroethylene (screening)	μg/kg			<36	<39 nc		<42	<37
Trichloromonofluoromethane	μg/kg	<400				<530		
Trichloropropane, 1,2,3-	μg/kg	<400				<530		
Vinyl Acetate	μg/kg	<400				<530		
Vinyl Chloride	μg/kg	<400				<530		
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg	<400				<530		
Xylenes (Total) (screening)	μg/kg	<u> </u>					<68	
Xylenes,m- & p- (screening)	μg/kg							
N								
			 	-				
		1	 	- 	•		- 	
		†						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 37 of 306

						<u></u>		Page 37 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
- ·· ·	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Date Metals Analyzed	-					07/29/1996		
Date Organics Analyzed	-	07/19/1996	07/19/1996	07/19/1996	07/22/1996	07/27/1996		07/22/1996
Date PCBs Analyzed	-							
Date Physical Analysed	-					08/06/1996		
Date Semi-volatile Organics Analyzed	•					07/31/1996		
Date of Metals SPLP Analysis	-						10/17/1996	
Date of Metals SPLP Extraction	-						<	
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-						10/09/1996	
Extraction Fluid No.	-						1	
Dinoseb	μg/kg							
Arsenic	mg/kg					<1.13		
Arsenic (SPLP)	mg/L						< 0.010	
Barium	mg/kg					12.8		
Barium (SPLP)	mg/L						<1.00	
Beryllium	mg/kg							
Cadmium	mg/kg					<3.38		
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L						<0.0010	
Chromium	mg/kg					<5.63		
Chromium (SPLP)	mg/L						<0.050	
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg					<22.5		
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L						<0.0050	
Mercury	mg/kg					<0.225		
Mercury (SPLP)	mg/L						<0.0020	

Page 38 of 306

	<u></u> -							Page 38 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
_	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Nickel	mg/kg					<11.3		
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L						<0.10	
Selenium	mg/kg	.				<1.13		
Selenium (SPLP)	mg/L	<u> </u>					<0.010	
Silver	mg/kg					<5.63		
Silver (SPLP)	mg/L	ļ					<0.020	
Zinc	mg/kg	ļ				10.9		
Zinc (TCLP)	mg/l	<u> </u>						
Zinc (SPLP)	mg/L						<0.050	
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg					<36.7		
Acenaphthene	μg/kg					<370		
Acenaphthylene	μg/kg					<370		
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 39 of 306

								Fage 39 01 30
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg	1				<370		
Benzidine	μg/kg		1			<370		
Benzo[a]anthracene	μg/kg					<370		
Benzo[a]pyrene	μg/kg	<u> </u>				<370		
Benzo[b]fluoranthene	μg/kg					<370		
Benzo[ghi]perylene	μg/kg					<370		
Benzo[k]fluoranthene	μg/kg					<370		
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg					<370		
Bis(2-chloroethyl) Ether	μg/kg	<u></u>				<370		
Bis(2-ethylhexyl) Phthalate	μg/kg					<370		
Bromophenyl Phenyl Ether,4-	μg/kg					<370		
Butyl Benzyl Phthalate	μg/kg					<370		
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg					<370		
Chlorophenol,2-	μg/kg					<370		
Chlorophenyl Phenyl Ether,4-	μg/kg	1000				<370		
Chrysene	μg/kg					<370		
Cresol,2.	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg					<370		
Di-n-octyl Phthalate	μg/kg					<370		
1.00/20/09								

Page 40 of 306

								Page 40 of
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043 1	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg					<370		
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg					<370		
Dichlorophenol,2,4-	μg/kg					<370		
Diethyl Phthalate	μg/kg					<370		
Dimethyl Phthalate	μg/kg					<370		
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg	1						
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg					<370		
Dinitro-o-cresol, 4,6-	μg/kg					<370		
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol,2.4-	μg/kg					<370		
Dinitrotoluene,2,4-	μg/kg	<u> </u>				<370		
Dinitrotoluene,2,6-	μg/kg					<370		
Diphenylamine	μg/kg							
Diphenylhydrazine, 1,2-	μg/kg					<370		
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg					<370		
Fluorene	μg/kg					<370		
Hexachlorobenzene	μg/kg					<370		
Hexachlorobutadiene	μg/kg					<370		
Hexachlorocyclopentadiene	μg/kg					<370		
Hexachloroethane	μg/kg					<370		
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	µg/kg					<370		

Page 41 of 306

								Page 41 of
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Isophorone	μg/kg					<370		
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg		,					
Methylcholanthrene,3-	μg/kg	<u> </u>						
Methylnaphthalene,2-	μg/kg	<u> </u>						
N-nitroso-di-n-butylamine	μg/kg	<u>.</u>						
N-nitroso-n-propylamine	μg/kg					<370		
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg					<370		
N-nitrosodiphenylamine	μg/kg					<370		
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg	<u> </u>				<370		
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine,alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg	<u> </u>						
Nitroaniline,3-	μg/kg]						
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg					<370		
Nitrophenol,2-	μg/kg					<370		
Nitrophenol,4-	μg/kg					<370		
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg					<370		

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 42 of 306

								Page 42 of .
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg					<370		
Phenol	μg/kg					<370		
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg					<370		
Pyrene	μg/kg					<370		
Pyridine	μg/kg							
Safrole	μg/kg	L						
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg					<370		
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg					<370		
Triethyl Phosphorothioate,0,0,0-	μg/kg							
Trinitrobenzene, 1, 3, 5-	μg/kg							
Acetone	μg/kg					<29		
Acetonitrile	μg/kg							
Acrolein	μg/kg					<15		
Acrylonitrile	μg/kg					<15		
Allyl Chloride	μg/kg							
Benzene	μg/kg					<5.8		
Benzene (screening)	μg/kg	<16	<16	<15	<15			<16
Bromobenzene	μg/kg					<5.8		
Bromoform	μg/kg					<5.8		

Page 43 of 306

								Page 43 01 30
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Carbon Disulfide	μg/kg					<5.8		
Carbon Tetrachloride	μg/kg					<5.8		
Chlorobenzene	μg/kg					<5.8		
Chlorodibromomethane	μg/kg					<5.8		
Chloroethane	μg/kg					<5.8		
Chloroethyl Vinyl Ether.2-	μg/kg					<5.8		
Chloroform	μg/kg					<5.8		
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg					<5.8		
Chlorotoluene,p-	μg/kg					<5.8		
Dibromomethane	μg/kg					<5.8		
Dichlorobenzene,1.2-	μg/kg					<5.8		
Dichlorobenzene,1,3-	μg/kg					<5.8		
Dichlorobenzene.1.4-	μg/kg]				<5.8		
Dichlorobromomethane	μg/kg					<5.8		
Dichlorodifluoromethane	μg/kg					<5.8		
Dichloroethane. 1, 1-	μg/kg					<5.8		
Dichloroethane, 1, 2-	μg/kg					<5.8		
Dichloroethylene,1,1-	μg/kg					<5.8		
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg					<5.8		
Dichloroethylene, 1,2-trans-	μg/kg					<5.8		
Dichloropropane, 1, 2-	μg/kg					<5.8		
Dichloropropylene, 1,3-	μg/kg							
Dichloropropylene, 1,3-cis-	μg/kg					<5.8		
Dichloropropylene,1,3-trans-	μg/kg					<5.8		
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 44 of 306

								Page 44 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
····	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Ethylbenzene	μg/kg					<5.8		
Ethylbenzene (screening)	μg/kg							
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg					<15		
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg					<5.8		
Methyl Chloride	μg/kg					<5.8		
Methyl Ethyl Ketone	μg/kg					<15		
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg					<15		
Methyl-tert-butyl Ether	μg/kg					<5.8		
Methylene Chloride	μg/kg					<5.8		
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg					<5.8		
Tetrachloroethane, 1, 1, 1, 2-	μg/kg					<5.8		
Tetrachloroethane, 1, 1, 2, 2-	μg/kg	<u> </u>				<5.8		
Tetrachloroethylene	μg/kg					<5.8		
Tetrachloroethylene (screening)	μg/kg	<24	<24	<23	<22			<24
Toluene	μg/kg					<5.8		
Toluene (screening)	μg/kg	<23	<22	<22	<21			<22
Trichloroethane,1,1,1-	μg/kg					<5.8		
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<390	<382	<375	<355			<382
Trichloroethane, 1, 1, 2-	μg/kg					<5.8		

Page 45 of 306

			······					Page 45 of 3
	Location ID	NK-SB-30	NK-SB-30	NK-SB-30	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016031	1016032	1016033	1016043	1016044	1016044	1016044
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	14:42	14:51	15:00	09:40	09:48	09:48	09:48
	Sample Depth	10' - 12'	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3511-248	96-3512-249	96-3513-250	96-3564-311	AEL96008032	AEL96010897	96-3565-312
Constituent	Units							
Trichloroethylene	μg/kg					<5.8		
Trichloroethylene (screening)	μg/kg	<38	<37	<36	<34			<37
Trichloromonofluoromethane	μg/kg					<5.8		
Trichloropropane, 1, 2, 3-	μg/kg		,			<5.8		
Vinyl Acetate	μg/kg					<5.8		
Vinyl Chloride	μg/kg					<5.8		
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg					<5.8		
Xylenes (Total) (screening)	μg/kg				_			
Xylenes,m- & p- (screening)	μg/kg					_		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							T
		1						
			 	-				
		 	<u> </u>					
							-	
								
						_		
			ļ					
		<u> </u>	 					
		<u> </u>						
		<u> </u>						
			1					
								-
		·	 					
		√	· 				<u> </u>	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 46 of 306

								Page 46 of
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Date Metals Analyzed	•			07/29/1996				
Date Organics Analyzed	-	07/22/1996	07/22/1996	07/27/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
Date PCBs Analyzed	-							
Date Physical Analysed	•			08/06/1996				
Date Semi-volatile Organics Analyzed		<u> </u>		07/31/1996				
Date of Metals SPLP Analysis	-							
Date of Metals SPLP Extraction	-							
Date of Metals TCLP Analysis	•							
Date of Other SPLP Analysis	-							
Extraction Fluid No.	•							
Dinoseb	μg/kg							
Arsenic	mg/kg			<1.17				
Arsenic (SPLP)	mg/L							
Barium	mg/kg			34.5				
Barium (SPLP)	mg/L	<u> </u>						
Beryllium	mg/kg							
Cadmium	mg/kg			<3.51				
Cadmium (TCLP)	mg/l]						
Cadmium (SPLP)	mg/L	<u> </u>						
Chromium	mg/kg			<5.85				
Chromium (SPLP)	mg/L							
Chromium (Total)	mg/kg							
Chromium (Totał) (TCLP)	mg/l							
ead	mg/kg			<23.4				
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg			<0.234				
Mercury (SPLP)	mg/L							

Page 47 of 306

								Page 47 of 3
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Nickel	mg/kg			<11.7				
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg		,	<1.17				
Selenium (SPLP)	mg/L							
Silver	mg/kg			<5.85				
Silver (SPLP)	mg/L							
Zinc	mg/kg			10.7				
Zine (TCLP)	rng/l							
Zinc (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane, 1, 2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg			<38.7				
Acenaphthene	μg/kg			<390				
Acenaphthylene	μg/kg			<390				
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 48 of 306

								Page 48 of 30
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Aminobiphenyl,4-	μg/kg	L						
Aniline	μg/kg							
Anthracene	μg/kg	<u></u>		<390				
Benzidine	μg/kg			<390				
Benzo[a]anthracene	μg/kg			<390				
Benzo[a]pyrene	μg/kg			<390				
Benzo[b]fluoranthene	μg/kg			<390				
Benzo[ghi]perylene	μg/kg			<390				
Benzo[k]fluoranthene	μg/kg			<390				
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg			<390				
Bis(2-chloroethyl) Ether	μg/kg			<390				
Bis(2-ethylhexyl) Phthalate	μg/kg			<390				
Bromophenyl Phenyl Ether,4-	μg/kg			<390				
Butyl Benzyl Phthalate	μg/kg			<390				
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg			<390				
Chlorophenol,2-	μg/kg			<390				
Chlorophenyl Phenyl Ether,4-	μg/kg			<390				
Chrysene	μg/kg			<390				
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg			<390				
Di-n-octyl Phthalate	μg/kg			<390				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 49 of 306

								Page 49 of 3
	Location ID	NK-SB-31						
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg			<390				
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg			<390				
Dichlorophenol,2,4-	μg/kg			<390				
Diethyl Phthalate	μg/kg			<390				
Dimethyl Phthalate	μg/kg			<390				
Dimethylaminoazobenzene,4-	μ g/ kg							
Dimethylbenzidine,3,3'-	μ g /kg							
Dimethylbenzo[a]anthracene,7,12-	μ g /kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μ g /kg			<390				
Dinitro-o-cresol,4,6-	μg/kg			<390				
Dinitrobenzene,1,3-	μ g /kg							
Dinitrophenol,2,4-	μg/kg			<390				
Dinitrotoluene,2,4-	μ g /kg			<390				
Dinitrotoluene,2,6-	μ g /kg			<390				
Diphenylamine	μ g /kg							
Diphenylhydrazine, 1,2-	μg/kg			<390				
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg			<390				
Fluorene	μg/kg			<390				
Hexachlorobenzene	μg/kg			<390				
Hexachlorobutadiene	μ g /kg			<390				
Hexachlorocyclopentadiene	μg/kg			<390				
Hexachloroethane	μg/kg			<390				
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg			<390				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 50 of 306

								rage 50 or.
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
and the second section of the section of t	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Isophorone	μg/kg			<390				
Isosafrole	μg/kg	I						
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg			<390				
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg			<390				
N-nitrosodiphenylamine	μg/kg			<390				
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg			<390				
Naphthoquinone, 1, 4-	μg/kg							
Naphthylamine, alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg			<390				
Nitrophenol,2-	μg/kg			<390				
Nitrophenol,4-	μg/kg			<390				
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg			<390				

Page 51 of 306

								Page 31 of 30
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Phenacetin	µg/kg							
Phenanthrene	μg/kg			<390				
Phenol	μg/kg			<390				
Phenylenediamine, 1, 4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg			<390				
Pyrene	μg/kg			<390				
Pyridine	μg/kg	ļ						
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg							
Toluidine,0-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg	ļ		<390				
Trichlorophenol.2,4,5-	μg/kg	1						
Trichlorophenol.2,4,6-	μg/kg			<390				
Triethyl Phosphorothioate,o.o,o-	μg/kg							
Trinitrobenzene.1,3,5-	μg/kg							
Acetone	μg/kg			<27				
Acetonitrile	μg/kg							
Acrolein	μg/kg			<13				
Acrylonitrile	μg/kg			<13				
Allyl Chloride	μg/kg							
Benzene	μg/kg			<5.3				
Benzene (screening)	μg/kg	<17 nc	<17 ne		<17 nc	<15	<14	<16
Bromobenzene	μg/kg			<5.3				
Bromoform	μg/kg			<5.3				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 52 of 306

								1 agc 32 01 30
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Carbon Disulfide	μg/kg			<5.3				
Carbon Tetrachloride	μg/kg			<5.3				
Chlorobenzene	μg/kg			<5.3				
Chlorodibromomethane	μg/kg			<5.3				
Chloroethane	μg/kg			<5.3				
Chloroethyl Vinyl Ether,2-	μg/kg			<5.3				
Chloroform	μg/kg			<5.3				
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg			<5.3				
Chlorotoluene,p-	μg/kg			<5.3				
Dibromomethane	μg/kg			<5.3				
Dichlorobenzene.1,2-	μg/kg			<5.3				
Dichlorobenzene, 1,3-	μg/kg			<5.3				
Dichlorobenzene, 1,4-	μg/kg			<5.3				
Dichlorobromomethane	μg/kg			<5.3				
Dichlorodifluoromethane	μg/kg			<5.3				
Dichloroethane, 1, 1-	μg/kg			<5.3				
Dichloroethane,1,2-	μg/kg			<5.3				
Dichloroethylene.1,1-	μg/kg			<5.3				
Dichloroethylene,1,2-	μg/kg						-	
Dichloroethylene,1,2-cis-	μg/kg			<5.3				
Dichloroethylene, 1,2-trans-	μg/kg			<5.3				
Dichloropropane.1.2-	μg/kg			<5.3				
Dichloropropylene, 1,3-	μg/kg							
Dichloropropylene,1,3-cis-	μg/kg			<5.3				
Dichloropropylene, 1,3-trans-	μg/kg			<5.3				
Dioxane,1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 53 of 306

								Page 53 of 30
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Ethylbenzene	μg/kg			<5.3				
Ethylbenzene (screening)	μg/kg							
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg			<13				
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg			<5.3				
Methyl Chloride	μg/kg			<5.3				
Methyl Ethyl Ketone	μg/kg			<13				
Methyl Methacrylate	μg/kg	}						
Methyl-2-pentanone,4-	μg/kg			<13				
Methyl-tert-butyl Ether	μg/kg			<5.3				
Methylene Chloride	μg/kg			<8.0				
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg			<5.3				
Tetrachloroethane, 1, 1, 1, 2-	μg/kg			<5.3				
Tetrachloroethane, 1, 1, 2, 2-	μg/kg			<5.3				
Tetrachloroethylene	μg/kg			<5.3				
Tetrachloroethylene (screening)	μg/kg	<26 nc	<26 ne		<25 nc	<23	<22	<24
Toluene	μg/kg			<5.3				
Toluene (screening)	μg/kg	<25 nc	<24 nc		<23 nc	<21	<20	<22
Trichloroethane, 1, 1, 1-	μg/kg			<5.3				
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<424 nc	<415 nc		<406 nc	<361	<348	<382
Trichloroethane, 1, 1, 2-	μg/kg			<5.3				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 54 of 306

								Page 54 of
	Location ID	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31	NK-SB-31
	Sample ID	1016045	1016046	1016047	1016047	1016048	1016049	1016050
	Sample Date	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996	07/17/1996
- 1 11	Sample Time	10:00	10:09	10:18	10:18	10:29	10:40	10:44
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
 · ·	Lab. Number	96-3537-279	96-3538-280	AEL96008033	96-3539-281	96-3540-282	96-3541-283	96-3542-284
Constituent	Units							
Trichloroethylene	μg/kg			<5.3				
Trichloroethylene (screening)	μg/kg	<41 nc	<40 nc		<39 nc	<35	<34	<37
Trichloromonotluoromethane	μg/kg			<5.3				
Trichloropropane,1,2,3-	μg/kg			<5.3				
Vinyl Acetate	μg/kg			<5.3				
Vinyl Chloride	μg/kg			<5.3				
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg			<5.3				
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
						-		
					- 			_ 1

Page 55 of 306

								Page 55 of
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Date Metals Analyzed	-			07/29/1996				07/29/1996
Date Organics Analyzed	-	07/22/1996	07/19/1996	07/25/1996		07/19/1996	07/19/1996	07/25/1996
Date PCBs Analyzed	-							
Date Physical Analysed				08/06/1996				08/06/1996
Date Semi-volatile Organics Analyzed	-			08/09/1996				08/09/1996
Date of Metals SPLP Analysis	•				10/17/1996			
Date of Metals SPLP Extraction	-				<			
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	•				10/09/1996			
Extraction Fluid No.	-				1			
Dinoseb	μg/kg							
Arsenic	mg/kg			<1.07				<1.15
Arsenic (SPLP)	mg/L				< 0.010			
Barium	mg/kg			12				14.9
Barium (SPLP)	mg/L				<1.00			
Beryllium	mg/kg							
Cadmium	mg/kg			<3.22				<3.46
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L	<u> </u>			<0.0010			
Chromium	mg/kg			6.55				<5.77
Chromium (SPLP)	mg/L	<u> </u>			<0.050			
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg			<21.5				<23.1
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L				<0.0050			
Mercury	mg/kg			<0.215				<0.231
Mercury (SPLP)	mg/L				<0.0020			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 56 of 306

								Page 56 of
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
1	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Nickel	mg/kg			<10.7				<11.5
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L				<0.10			
Selenium	mg/kg			<1.07				<1.15
Selenium (SPLP)	mg/L				<0.010			
Silver	mg/kg			<5.37				<5.77
Silver (SPLP)	mg/L				<0.020			
Zine	mg/kg			14				10.7
Zinc (TCLP)	mg/l							
Zine (SPLP)	mg/L				0.054			
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminotluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg	1						
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg	1						
Total Petroleum Hydrocarbons	mg/kg	1		678				<39.5
Acenaphthene	μg/kg			<1000				<400
Acenaphthylene	μg/kg			<1000				<400
Acetophenone	μg/kg]						

Page 57 of 306

								Page 37 01 3
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg			<1000				<400
Benzidine	μg/kg			<1000				<400
Benzo[a]anthracene	μg/kg			<1000				<400
Benzo[a]pyrene	μg/kg			<1000				<400
Benzo[b]fluoranthene	μg/kg			<1000				<400
Benzo[ghi]perylene	μg/kg			<1000				<400
Benzo[k]fluoranthene	μg/kg			<1000				<400
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg			<1000				<400
Bis(2-chloroethyl) Ether	μg/kg			<1000				<400
Bis(2-ethylhexyl) Phthalate	μg/kg			<1000				<400
Bromophenyl Phenyl Ether.4-	μg/kg			<1000				<400
Butyl Benzyl Phthalate	μg/kg			<1000				<400
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg			<1000				<400
Chlorophenol,2-	μg/kg			<1000				<400
Chlorophenyl Phenyl Ether,4-	μg/kg			<1000				<400
Chrysene	μg/kg			<1000				<400
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg			<1000				<800
Di-n-octyl Phthalate	μg/kg			<1000				<400

Page 58 of 306

								1 age 36 01 30
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Dibenzo[a,h anthracene	μg/kg			<1000				<400
Dibenzofuran	μg/kg							
Dichloro-2-butylene,1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg			<1000				<400
Dichlorophenol,2,4-	μg/kg			<1000				<400
Diethyl Phthalate	μg/kg			<1000				<400
Dimethyl Phthalate	μg/kg			<1000				<400
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine, alpha, alpha-	μg/kg							
Dimethylphenol.2,4-	μg/kg			<1000				<400
Dinitro-o-cresol,4,6-	μg/kg			<1000				<400
Dinitrobenzene,1.3-	μg/kg							
Dinitrophenol,2.4-	μg/kg			<1000				<400
Dinitrotoluene,2,4-	μg/kg			<1000				<400
Dinitrotoluene,2.6-	μg/kg			<1000				<400
Diphenylamine	μg/kg							
Diphenylhydrazine, 1, 2-	μg/kg			<1000				<400
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg			<1000				<400
Fluorene	μg/kg			<1000				<400
Hexachlorobenzene	μg/kg			<1000				<400
Hexachlorobutadiene	μg/kg			<1000				<400
Hexachlorocyclopentadiene	μg/kg			<1000				<400
Hexachloroethane	μg/kg			<1000				<400
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg			<1000				<400
Vatoria Deint of an O. 20/08								

Page 59 of 306

								Page 39 01 3
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Isophorone	μg/kg			<1000				<400
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg		1					
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg			<1000				<400
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg			<1000				<400
N-nitrosodiphenylamine	μg/kg			<1000				<400
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg			<1000				<400
Naphthoquinone.1.4-	μg/kg							
Naphthylamine,alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine.5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg			<1000				<400
Nitrophenol,2-	μg/kg			<1000				<400
Nitrophenol,4-	μg/kg			<1000				<400
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg			<1000				<400

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 60 of 306

								Page 60 of 30
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg			<1000				<400
Phenol	μg/kg			<1000				<400
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg			<1000				<400
Ругепе	μg/kg			<1000				<400
Pyridine	μg/kg							
Safrole	μg/kg	1						
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg			<1000				<400
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol.2.4,6-	μg/kg			<1000				<400
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene, 1, 3, 5-	μg/kg							
Acetone	μg/kg			<47				<69
Acetonitrile	μg/kg							
Acrolein	μg/kg			<24				<34
Acrylonitrile	μg/kg			<24				<34
Allyl Chloride	μg/kg							
Benzene	μg/kg			<9.5				<14
Benzene (screening)	μg/kg	<16 nc	<16			<13	<16	
Bromobenzene	μg/kg			<9.5				<14
Bromoform	μg/kg			<9.5				<14

Page 61 of 306

								Page 01 01 30
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Carbon Disulfide	μ g/k g			<9.5				<14
Carbon Tetrachloride	μg/kg			<9.5				<14
Chlorobenzene	μg/kg			<9.5				<14
Chlorodibromomethane	μg/kg			<9.5				<14
Chloroethane	μg/kg			<9.5				<14
Chloroethyl Vinyl Ether,2-	μg/kg			<9.5				<14
Chloroform	μg/kg			<9.5				<14
Chloroprene,beta-	μg/kg							
Chlorotoluene,o-	μg/kg			<9.5				<14
Chlorotoluene,p-	μg/kg			<9.5				<14
Dibromomethane	μg/kg			<9.5				<14
Dichlorobenzene,1,2-	μg/kg			<9.5				<14
Dichlorobenzene, 1,3-	μg/kg			<9.5				<14
Dichlorobenzene, 1,4-	μg/kg			<9.5				<14
Dichlorobromomethane	μg/kg			<9.5				<14
Dichlorodifluoromethane	μg/kg			<9.5				<14
Dichloroethane, 1,1-	μg/kg			<9.5				<14
Dichloroethane, 1,2-	μg/kg			<9.5				<14
Dichloroethylene,1,1-	μg/kg			<9.5				<14
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg			<9.5				<14
Dichloroethylene,1,2-trans-	μg/kg			<9.5				<14
Dichloropropane,1,2-	μg/kg			<9.5				<14
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene, 1.3-cis-	μg/kg			<9.5				<14
Dichloropropylene, 1, 3-trans-	μg/kg			<9.5				<14
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg	1						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 62 of 306

								Page 62 of 30
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
· —· —-	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Ethylbenzene	μg/kg			<9.5				<14
Ethylbenzene (screening)	μg/kg					<18	<23	
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg			<24				<34
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg			<9.5				<14
Methyl Chloride	μg/kg			<9.5				<14
Methyl Ethyl Ketone	μg/kg			<24				<34
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg			<24				<34
Methyl-tert-butyl Ether	μg/kg			<9.5				<14
Methylene Chloride	μg/kg			<9.5				<14
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg			<9.5				<14
Tetrachloroethane.1,1.1,2-	μg/kg			<9.5				<14
Tetrachloroethane, 1, 1, 2, 2-	μg/kg			<9.5				<14
Tetrachloroethylene	μg/kg			<9.5				<14
Tetrachloroethylene (screening)	μg/kg	<25 nc	<24			<19	<24	
Toluene	μg/kg			<9.5				<14
Toluene (screening)	μg/kg	<23 nc	<22			<18	<23	
Trichloroethane, 1, 1, 1-	μg/kg			<9.5				<14
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<398 nc	<382			<310	<390	
Trichloroethane, 1, 1, 2-	μg/kg			<9.5				<14

Page 63 of 306

								rage 03 01 3
	Location ID	NK-SB-31	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32
	Sample ID	1016051	1016034	1016035	1016035	1016035	1016036	1016037
	Sample Date	07/17/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996
	Sample Time	10:51	15:15	15:27	15:27	15:27	00:00	00:00
•	Sample Depth	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'	6' - 8'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	AEL
	Lab. Number	96-3543-285	96-3517-255	AEL96007936	AEL96010898	96-3518-258	96-3519-259	AEL96007937
Constituent	Units							
Prichloroethylene	μg/kg			<9.5				<14
Trichloroethylene (screening)	μg/kg	<39 nc	<37			<30	<38	
Trichloromonofluoromethane	μg/kg			<9.5				<14
Trichloropropane, 1, 2, 3-	μg/kg			<9.5				<14
Vinyl Acetate	μg/kg			<9.5				<14
Vinyl Chloride	μg/kg			<9.5				<14
Xylene,0- (screening)	μg/kg							
Xylenes (Total)	μg/kg			<9.5				<14
Xylenes (Total) (screening)	μg/kg					<38	<48	
Xylenes,m- & p- (screening)	μg/kg							
			-					-
		<u></u>						
		<u> </u>						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 64 of 306

				Page 64 of 30				
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units							
Date Metals Analyzed	-						08/01/1996	
Date Organics Analyzed		07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	08/02/1996	
Date PCBs Analyzed								
Date Physical Analysed	-						08/07/1996	
Date Semi-volatile Organics Analyzed	•						08/08/1996	
Date of Metals SPLP Analysis								10/24/1996
Date of Metals SPLP Extraction	-							<
Date of Metals TCLP Analysis	-	<u> </u>						
Date of Other SPLP Analysis	<u> </u>	<u> </u>						10/16/1996
Extraction Fluid No.		<u> </u>						1
Dinoseb	μg/kg							
Arsenic	mg/kg	ļ					<1.07	
Arsenie (SPLP)	mg/L							<0.010
Barium	mg/kg						13.3	
Barium (SPLP)	mg/L							1.55
Beryllium	mg/kg							
Cadmium	mg/kg						<3.21	
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L							<0.0010
Chromium	mg/kg						13.4	
Chromium (SPLP)	mg/L							<0.050
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg						<21.4	
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							0.0085
Mercury	mg/kg						<0.204	
Mercury (SPLP)	mg/L							<0.0020

Page 65 of 306

								Page 65 of 3
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units							
Nickel	mg/kg						<10.7	
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							<0.10
Selenium	mg/kg						<1.02	
Selenium (SPLP)	mg/L							<0.010
Silver	mg/kg						<5.34	
Silver (SPLP)	mg/L							<0.020
Zine	mg/kg						62.2	
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L							0.118
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane, 1, 2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg						<34.9	
Acenaphthene	μg/kg						<350	
Acenaphthylene	μg/kg						<350	
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 66 of 306

								rage oo or 3
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg						<350	
Benzidine	μg/kg						<350	
Benzo[a]anthracene	μg/kg						<350	
Benzo[a]pyrene	μg/kg						<350	
Benzo[b]fluoranthene	μg/kg						<350	
Benzo[ghi]perylene	μg/kg						<350	
Benzo[k]fluoranthene	μg/kg						<350	
Benzoie Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg						<350	
Bis(2-chloroethyl) Ether	μg/kg						<350	
Bis(2-ethylhexyi) Phthalate	μg/kg						<350	
Bromophenyl Phenyl Ether,4-	μg/kg						<350	
Butyl Benzyl Phthalate	μg/kg						<350	
Carbazole	μg/kg							
Chloro-m-cresol.p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg						<350	
Chlorophenol,2-	μg/kg						<350	
Chlorophenyl Phonyl Ether,4-	μg/kg						<350	
Chrysene	μg/kg						<350	
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg						<350	
Di-n-octyl Phthalate	μg/kg						<350	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 67 of 306

								Page 67 of 30
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg						<350	
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Diehlorobenzidine,3,3'-	μg/kg						<350	
Dichlorophenol,2,4-	μg/kg						<350	
Diethyl Phthalate	μg/kg						<350	
Dimethyl Phthalate	μg/kg	<u></u>					<350	
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg						<350	
Dinitro-o-cresol,4,6-	μg/kg						<350	
Dinitrobenzene, 1,3-	μg/kg							
Dinitrophenol,2,4-	μg/kg						<350	
Dinitrotoluene,2,4-	μg/kg						<350	
Dinitrotoluene,2.6-	μg/kg						<350	
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg						<350	
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg						<350	
Fluorene	μg/kg						<350	
Hexachlorobenzene	μg/kg						<350	
Hexachlorobutadiene	μg/kg						<350	
Hexachlorocyclopentadiene	μg/kg						<350	
Hexachloroethane	μg/kg						<350	1
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg						<350	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 68 of 306

								Page 68 of 30
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units	**************************************						
Isophorone	μg/kg						<350	
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg						<350	
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg						<350	
N-nitrosodiphenylamine	μg/kg						<350	
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg						<350	
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine,alpha-	μg/kg							
Naphthylamine, beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline.3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg						<350	
Nitrophenol,2-	μg/kg						<350	
Nitrophenol,4-	μg/kg						<350	
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg						<350	

Page 69 of 306

								Page 69 of 300
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg						<350	
Phenol	μg/kg						<350	
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg						<350	
Pyrene	μg/kg						<350	
Pyridine	μ g/k g							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3.4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene,1,2,4-	μg/kg						<350	
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol.2,4,6-	μg/kg						<350	_
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg						<20	
Acetonitrile	μg/kg							
Acrolein	μg/kg						<10	
Acrylonitrile	μg/kg						<10	
Allyl Chloride	μg/ k g							
Benzene	μg/kg						<4.1	
Benzene (screening)	μg/kg	<16	<16	<13	<14	<14		
Bromobenzene	μg/kg						<4.1	
Bromoform	μg/kg						<4.1	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 70 of 306

								Page 70 01 3
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units	T						
Carbon Disulfide	μg/kg						<4.1	
Carbon Tetrachloride	μg/kg						<4.1	
Chlorobenzene	μg/kg						<4.1	
Chlorodibromomethane	μg/kg						<4.1	
Chloroethane	μg/kg						<4.1	
Chloroethyl Vinyl Ether,2-	μg/kg						<4.1	
Chloroform	μg/kg						<4.1	
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg						<4.1	
Chlorotoluene,p-	μg/kg						<4.1	
Dibromomethane	μg/kg						<4.1	
Dichlorobenzene, 1,2-	μg/kg						<4.1	
Dichlorobenzene, 1,3-	μg/kg						<4.1	
Dichlorobenzene, 1,4-	μg/kg						<4.1	
Dichlorobromomethane	μg/kg						<4.1	
Dichlorodifluoromethane	μg/kg						<4.1	
Dichloroethane, 1, 1-	μg/kg						<4.1	
Dichloroethane, 1,2-	μg/kg						<4.1	
Dichloroethylene,1,1-	μg/kg						<4.1	
Dichloroethylene.1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg						<4.1	
Dichloroethylene, 1,2-trans-	μg/kg						<4.1	
Dichloropropane, 1,2-	μg/kg						<4.1	
Dichloropropylene, 1,3-	μg/kg							
Dichloropropylene, 1,3-cis-	μg/kg						<4.1	
Dichloropropylene, 1,3-trans-	μg/kg						<4.1	
Dioxane,1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Page 71 of 306

								Page /1 of 3
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units							
Ethylbenzene	μg/kg						<4.1	
Ethylbenzene (screening)	μg/kg	<23						
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg						<10	
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg						<4.1	
Methyl Chloride	μg/kg						<4.1	
Methyl Ethyl Ketone	μg/kg						<10	
Methyl Methacrylate	μ g/k g							
Methyl-2-pentanone,4-	μg/kg						<10	
Methyl-tert-butyl Ether	μg/kg						<4.1	
Methylene Chloride	μg/kg						<4.1	
Pentachlorobenzene	μg/kg							
Pentachloroethane	μ g/k g							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg	ļ						
Styrene	μg/kg						<4.1	
Tetrachloroethane, 1, 1, 1, 2-	μg/kg						<4.1	
Tetrachloroethane, 1, 1, 2, 2-	μg/kg						<4.1	
Tetrachloroethylene	μg/kg						<4.1 N1	
Tetrachloroethylene (screening)	μg/kg	<24	<24	<20	<21	<21		
Toluene	μg/kg						<4.1	
Toluene (screening)	μg/kg	<22	<23	<18	<20	<19		
Trichloroethane, 1, 1, 1-	μg/kg						<4.1	
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<382	<390	<320	<342	<331		
Trichloroethane,1,1,2-	μg/kg						<4.1	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 72 of 306

								Page 72 01 3
	Location ID	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-32	NK-SB-36	NK-SB-36
	Sample ID	1016037	1016038	1016039	1016040	1016041	1016123	1016123
	Sample Date	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/16/1996	07/22/1996	07/22/1996
	Sample Time	00:00	00:00	00:00	00:00	00:00	12:30	12:30
	Sample Depth	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	LEA	AEL	AEL
	Lab. Number	96-3520-260	96-3521-261	96-3522-262	96-3523-263	96-3524-264	AEL96008139	AEL96010902
Constituent	Units							
Trichloroethylene	μg/kg						<4.1	
Trichloroethylene (screening)	μg/kg	<37	<38	<31	<33	<32		
Trichloromonofluoromethane	μg/kg	<u></u>					<4.1	
Trichloropropane,1,2,3-	μg/kg						<4.1	
Vinyl Acetate	μg/kg						<4.1	
Vinyl Chloride	μg/kg						<4.1	
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg						<4.1	
Xylenes (Total) (screening)	μg/kg	<47						
Xylenes,m- & p- (screening)	μg/kg]
		<u> </u>						
		1						
		1						
		 						
		1						
		1						+
			-					+

Page 73 of 306

								Page 73 of 3
	Location ID	NK-SB-36						
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Date Metals Analyzed	-			08/01/1996				
Date Organics Analyzed	-	07/24/1996	07/24/1996	08/02/1996	07/24/1996	07/24/1996	07/24/1996	07/24/1996
Date PCBs Analyzed	-							
Date Physical Analysed	•			08/07/1996				
Date Semi-volatile Organics Analyzed	•			08/08/1996				
Date of Metals SPLP Analysis	-							
Date of Metals SPLP Extraction	•							
Date of Metals TCLP Analysis	•							
Date of Other SPLP Analysis	•							
Extraction Fluid No.	-							
Dinoseb	μ g/k g							
Arsenic	mg/kg	<u> </u>		<1.11				
Arsenic (SPLP)	mg/L	<u> </u>						
Barium	mg/kg			16.7				
Barium (SPLP)	mg/L							
Beryllium	mg/kg							
Cadmium	mg/kg			<3.34				
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L							
Chromium	mg/kg			<5.57				
Chromium (SPLP)	mg/L							
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg			<22.3				
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg			<0.2				
Mercury (SPLP)	mg/L		7.1					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 74 of 306

								Page 74 of 30
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Nickel	mg/kg			<11.1				
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg			<1				
Selenium (SPLP)	mg/L							
Silver	mg/kg			<5.57				
Silver (SPLP)	mg/L							
Zinc	mg/kg			58.7				
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminotluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg	_						
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg			<36.8				
Acenaphthene	μg/kg			<370				
Acenaphthylene	μg/kg			<370				
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 75 of 306

								Page 73 01 3
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg			<370				
Benzidine	μg/kg			<370				
Benzo[a]anthracene	μg/kg			<370				
Benzo[a]pyrene	μg/kg			<370				
Benzo[b]fluoranthene	μg/kg			<370				
Benzo[ghi]perylene	μg/kg	1		<370				
Benzo[k]fluoranthene	μg/kg	ļ		<370				
Benzoic Acid	μg/kg	<u> </u>						
Benzyl Alcohol	μg/kg	1.						
Bis(2-chloroethoxy)methane	μg/kg			<370				
Bis(2-chloroethyl) Ether	μg/kg			<370				
Bis(2-ethylhexyl) Phthalate	μg/kg			<370				
Bromophenyl Phenyl Ether,4-	μg/kg			<370				
Butyl Benzyl Phthalate	μg/kg			<370				
Carbazole	μg/kg							
Chloro-m-cresol.p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg			<370				
Chlorophenol,2-	μg/kg			<370				
Chlorophenyl Phenyl Ether,4-	μg/kg			<370				
Chrysene	μg/kg			<370				
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg			<370				
Di-n-octyl Phthalate	μg/kg			<370				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 76 of 306

								Page 76 of 3
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
-	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg			<370				
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg			<370				
Dichlorophenol,2,4-	μg/kg			<370				
Diethyl Phthalate	μg/kg			<370				
Dimethyl Phthalate	μg/kg			<370				
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine.alpha.alpha-	μg/kg							
Dimethylphenol.2,4-	μg/kg			<370				
Dinitro-o-cresol, 4,6-	μg/kg			<370				
Dinitrobenzene, 1.3-	μg/kg							
Dinitrophenol,2,4-	μg/kg			<370				
Dinitrotoluene, 2.4-	μg/kg			<370				
Dinitrotoluene,2,6-	μg/kg			<370				
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg			<370				
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg			<370				
Fluorene	μg/kg			<370				
Hexachlorobenzene	μg/kg			<370				
Hexachlorobutadiene	μg/kg			<370				
Hexachlorocyclopentadiene	μg/kg			<370				
Hexachloroethane	μg/kg			<370			-	
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg	1		<370				

Page 77 of 306

		_			· · · · · · · · · · · · · · · · · · ·			Page 77 of
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Isophorone	μg/kg			<370				
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg			<370				
N-nitrosodiethylamine	μ g/kg							
N-nitrosodimethylamine	μg/kg			<370				
N-nitrosodiphenylamine	μg/kg			<370				
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μ g/k g			<370				
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine.alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine.5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg			<370				
Nitrophenol,2-	μg/kg			<370				
Nitrophenol,4-	μg/kg			<370				
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg	_						
Pentachlorophenol	μg/kg			<370			<u> </u>	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 78 of 306

								Page /8 of 300
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
· · · · · · · · · · · · · · · · · · ·	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg			<370				
Phenol	μg/kg			<370				
Phenylenediamine,1,4-	μg/kg							
Picoline,2-	μg/kg	_	1					
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg			<370				
Pyrene	μg/kg			<370				
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene,1,2,4-	μg/kg			<370				
Trichlorophenol.2,4.5-	μg/kg							
Trichlorophenol.2,4.6-	μg/kg			<370				
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene.1.3.5-	μg/kg							
Acetone	μg/kg			<21				
Acetonitrile	μg/kg							
Acrolein	μg/kg			<11				
Acrylonitrile	μg/kg			<11				
Allyl Chloride	μg/kg							
Benzene	μg/kg			<4.3				
Benzene (screening)	μg/kg	<16	<16		<14	<13	<16	<15
Bromobenzene	μg/kg			<4.3				
Bromoform	μg/kg			<4.3				

Page 79 of 306

								Page /9 of .
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Carbon Disulfide	μg/kg			<4.3				
Carbon Tetrachloride	μg/kg			<4.3				
Chlorobenzene	μg/kg			<4.3				
Chlorodibromomethane	μg/kg			<4.3				
Chloroethane	μg/kg			<4.3				
Chloroethyl Vinyl Ether,2-	μg/kg			<4.3				
Chloroform	μg/kg			<4.3				
Chloroprene,beta-	μg/kg							
Chlorotoluene,o-	μg/kg			<4.3				
Chlorotoluene.p-	μg/kg			<4.3				
Dibromomethane	μg/kg			<4.3				
Dichlorobenzene,1,2-	μg/kg			<4.3				
Dichlorobenzene.1.3-	μg/kg			<4.3				
Dichlorobenzene,1,4-	μg/kg			<4.3				
Dichlorobromomethane	μg/kg			<4.3				
Dichlorodifluoromethane	μg/kg			<4.3				
Dichloroethane, 1, 1-	μg/kg			<4.3				
Dichloroethane.1.2-	μg/kg			<4.3				
Dichloroethylene, 1, 1-	μg/kg			<4.3				
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg			<4.3				
Dichloroethylene, 1, 2-trans-	μg/kg			<4.3				
Dichloropropane,1,2-	μg/kg			<4.3	<u>_</u>			
Dichloropropylene, 1,3-	μg/kg							
Dichloropropylene, 1,3-cis-	μg/kg			<4.3				
Dichloropropylene, 1,3-trans-	μg/kg			<4.3				
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg	J						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 80 of 306

								Page 80 of 300
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Ethylbenzene	μg/kg			<4.3				
Ethylbenzene (screening)	μg/kg	<23	<23		<20	<18	<23	<22
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg			<11				
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg			<4.3				
Methyl Chloride	μg/kg			<4.3				
Methyl Ethyl Ketone	μg/kg			<11				
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg			<11				
Methyl-tert-butyl Ether	μg/kg			<4.3				
Methylene Chloride	μg/kg			<4.3				
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg			<4.3				
Tetrachloroethane, 1, 1, 1, 2-	μg/kg			<4.3				
Tetrachloroethane, 1, 1, 2, 2-	μg/kg			<4.3				
Tetrachloroethylene	μg/kg			<4.3				
Tetrachloroethylene (screening)	μg/kg	<24	<24		<21	<19	<24	<23
Toluene	μg/kg			<4.3				
Toluene (screening)	μg/kg	<23	<22		<20	<18	<22	<22
Trichloroethane,1,1,1-	μg/kg			<4.3				
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<390	<382		<342	<310	<382	<375
Trichloroethane, 1, 1, 2-	μg/kg			<4.3				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 81 of 306

								Page 81 of 3
	Location ID	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36	NK-SB-36
	Sample ID	1016123	1016124	1016125	1016125	1016126	1016127	1016128
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	12:30	12:41	12:55	12:55	13:00	13:07	13:15
	Sample Depth	0' - 2'	2' - 4'	4' - 6'	4' - 6'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	AEL	LEA	LEA	LEA	LEA
	Lab. Number	96-3648-403	96-3649-404	AEL96008140	96-3650-405	96-3646-401	96-3651-406	96-3652-407
Constituent	Units							
Trichloroethylene	μg/kg			<4.3				
Trichloroethylene (screening)	μg/kg	<38	<37		4 J	<30	2 J	1 J
Trichloromonotluoromethane	μg/kg			<4.3				
Trichloropropane, 1, 2, 3-	μg/kg			<4.3				
Vinyl Acetate	μg/kg			<4.3				
Vinyl Chloride	μg/kg			<4.3				
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg			<4.3				
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
					 			
		ļ						
		 						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 82 of 306

	T	1,			Ti	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111 00 00
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Date Metals Analyzed	-				08/01/1996			
Date Organics Analyzed	-	07/24/1996	07/24/1996	07/24/1996	08/02/1996		07/24/1996	07/24/1996
Date PCBs Analyzed	-							
Date Physical Analysed	-				08/07/1996			
Date Semi-volatile Organics Analyzed	-				08/08/1996			
Date of Metals SPLP Analysis	•					10/24/1996		
Date of Metals SPLP Extraction	-					<		
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-					10/16/1996		
Extraction Fluid No.	-					1		
Dinoseb	μg/kg							
Arsenic	mg/kg				2.05			
Arsenic (SPLP)	mg/L					<0.010		
Barium	mg/kg				14.2			
Barium (SPLP)	mg/L					<1.00		
Beryllium	mg/kg							
Cadmium	mg/kg				<3.24			
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L					<0.0010		
Chromium	mg/kg				6.7			
Chromium (SPLP)	mg/L				-	<0.050		
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg				<21.6			
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L					<0.0050		
Mercury	mg/kg				<0.216	-		
Mercury (SPLP)	mg/L			1		<0.0020		

Page 83 of 306

								Page 83 of .
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Nickel	mg/kg				<10.8			
Nickel (TCLP)	mg/l	<u> </u>						
Nickel (SPLP)	mg/L					<0.10		
Selenium	mg/kg				<1.08			
Selenium (SPLP)	mg/L					<0.010		
Silver	mg/kg				<5.4			
Silver (SPLP)	mg/L					<0.020		
Zinc	mg/kg				20.6			
Zinc (TCLP)	mg/l							
Zine (SPLP)	mg/L					0.118		
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg				<35.0			
Acenaphthene	μg/kg				<350			
Acenaphthylene	μg/kg				<350			
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 84 of 306

								Page 84 of 30
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
***************************************	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg				<350			
Benzidine	μg/kg	1			<350			
Benzo[a]anthracene	μg/kg				<350			
Benzo[a]pyrene	μg/kg				<350			
Benzo[b]fluoranthene	μg/kg				<350			
Benzo[ghi]perylene	μg/kg				<350			
Benzo[k]fluoranthene	μg/kg				<350			
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg				<350			
Bis(2-chloroethyl) Ether	μg/kg				<350			
Bis(2-ethylhexyl) Phthalate	μg/kg				<350			
Bromophenyl Phenyl Ether,4-	μg/kg				<350			
Butyl Benzyl Phthalate	μg/kg				<350			
Carbazole	μg/kg							
Chloro-m-cresol.p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg				<350			
Chlorophenol,2-	μg/kg				<350			
Chlorophenyl Phenyl Ether,4-	μg/kg				<350			
Chrysene	μg/kg				<350			
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg	1			<710			
Di-n-octyl Phthalate	μg/kg				<350			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 85 of 306

								Page 85 of 3
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
11.0	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg				<350			
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg				<350			
Dichlorophenol,2,4-	μg/kg				<350			
Diethyl Phthalate	μ g /kg				<350			
Dimethyl Phthalate	μg/kg				<350			
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg				<350			
Dinitro-o-cresol,4,6-	μg/kg				<350			
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol,2,4-	μg/kg				<350			
Dinitrotoluene,2,4-	μg/kg				<350			
Dinitrotoluene,2.6-	μg/kg				<350			
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg				<350			
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg				<350			
Fluorene	μg/kg				<350			
Hexachlorobenzene	μg/kg				<350			
Hexachlorobutadiene	μg/kg				<350			
Hexachlorocyclopentadiene	μg/kg				<350			
Hexachloroethane	μg/kg				<350			
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg				<350			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 86 of 306

								Page 86 of
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Isophorone	μg/kg				<350	<u> </u>		
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg				<350			
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg				<350			
N-nitrosodiphenylamine	μg/kg				<350			
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg	<u></u>						
Naphthalene	μg/kg	<u> </u>			<350			
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine.alpha-	μg/kg							
Naphthylamine.beta-	μg/kg							
Nitro-o-toluidine.5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg	<u> </u>						
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg				<350			
Nitrophenol,2-	μg/kg				<350			
Nitrophenol,4-	μg/kg				<350			
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg				<350			

Page 87 of 306

		<u> </u>						1 agc 67 01 3
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg				<350			
Phenol	μg/kg				<350			
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg	I			<350			
Pyrene	μg/kg				<350			
Pyridine	μg/kg							
Safrole	μ g /kg							
Tetrachlorobenzene, 1,2,4,5-	μg/kg							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg				<350			
Trichlorophenol,2,4,5-	μg/kg	1						
Trichlorophenol.2,4,6-	μg/kg				<350			
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg				<41			
Acetonitrile	μg/kg							
Acrolein	μg/kg				<10			
Acrylonitrile	μg/kg				<10			
Allyl Chloride	μg/kg							
Benzene	μg/kg				<4.1			
Benzene (screening)	μg/kg	<15	<14	<16 nc			<16	<13
Bromobenzene	μg/kg				<4.1			
Bromoform	μg/kg				<4.1			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 88 of 306

						_		1 450 00 01 30
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Carbon Disulfide	μg/kg				<4.1			
Carbon Tetrachloride	μg/kg				<4.1			
Chlorobenzene	μg/kg				<4.1			
Chlorodibromomethane	μg/kg				<4.1			
Chloroethane	μg/kg				<4.1			
Chloroethyl Vinyl Ether.2-	μg/kg				<4.1			
Chloroform	μg/kg				<4.1			
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg				<4.1			
Chlorotoluene,p-	μg/kg				<4.1			
Dibromomethane	μg/kg				<4.1			
Dichlorobenzene.1.2-	μg/kg				<4.1			
Dichlorobenzene,1,3-	μg/kg				<4.1			
Dichlorobenzene,1,4-	μg/kg				<4.1			
Dichlorobromomethane	μg/kg				<4.1			
Diehlorodifluoromethane	μg/kg				<4.1			
Dichloroethane,1.1-	μg/kg				<4.1			
Dichloroethane,1,2-	μg/kg				<4.1			
Dichloroethylene.1,1-	μg/kg				<4.1			
Dichloroethylene.1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg				<4.1			
Dichloroethylene,1,2-trans-	μg/kg	<u> </u>			<4.1			
Dichloropropane,1,2-	μg/kg				<4.1			
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene,1,3-cis-	μg/kg				<4.1			
Dichloropropylene, 1.3-trans-	μg/kg				<4.1			
Dioxane,1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 89 of 306

								Page 89 of 30
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Ethylbenzene	μg/kg				<4.1			
Ethylbenzene (screening)	μg/kg	<22	<20	<24 nc			<23	<19
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg				<10			
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg				<4.1			
Methyl Chloride	μg/kg				<4.1			
Methyl Ethyl Ketone	μg/kg				<10			
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg				<10			
Methyl-tert-butyl Ether	μg/kg				<4.1			
Methylene Chloride	μg/kg				<4.1			
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg	ļ						
Styrene	μg/kg				<4.1			
Tetrachloroethane, 1, 1, 1, 2-	μg/kg	.			<4.1			
Tetrachloroethane, 1, 1, 2, 2-	μg/kg				<4.1			
Tetrachloroethylene	μg/kg				<4.1			
Tetrachloroethylene (screening)	μg/kg	<23	<21	<25 nc			<24	<20
Toluene	μg/kg				<4.1			
Toluene (screening)	μg/kg	<21	<19	<23 nc			<22	<18
Trichloroethane, 1.1, 1-	μg/kg				<4.1			
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<368	<336	<398 nc			<382	<320
Trichloroethane, 1, 1, 2-	μg/kg	1			<4.1			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 90 of 306

								Page 90 of 3
	Location ID	NK-SB-36	NK-SB-36	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016129	1016130	1016114	1016115	1016115	1016115	1016116
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	13:21	13:27	11:15	11:21	11:21	11:21	11:23
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	2' - 4'	2' - 4'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	LEA	AEL	AEL	LEA	LEA
	Lab. Number	96-3653-408	96-3654-409	96-3618-366	AEL96008141	AEL96010903	96-3619-367	96-3620-368
Constituent	Units							
Trichloroethylene	μg/kg				<4.1			
Trichloroethylene (screening)	μg/kg	<36	<33	<39 nc			<37	<31
Trichloromonofluoromethane	μg/kg				<4.1			
Trichloropropane,1,2,3-	μg/kg				<4.1			
Vinyl Acetate	μg/kg				<4.1			
Vinyl Chloride	μg/kg				<4.1			
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg				<4.1			
Xylenes (Total) (screening)	μg/kg							
Kylenes,m- & p- (screening)	μg/kg							
-yours, we say the say								
- A-A								
	=	<u> </u>		<u> </u>				
						_	_	
Notes: 1. Printed on 06/30/98						-		

LΕΔ

Page 91 of 306

			<u>-</u> -					Page 91 of 30
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Date Metals Analyzed	-		08/01/1996					
Date Organics Analyzed	-	07/24/1996	08/02/1996	07/24/1996	07/24/1996	07/24/1996	07/24/1996	07/24/1996
Date PCBs Analyzed	•							
Date Physical Analysed	-		08/07/1996					
Date Semi-volatile Organics Analyzed	-		08/08/1996					
Date of Metals SPLP Analysis	•							
Date of Metals SPLP Extraction	•							
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	•							
Extraction Fluid No.	-							
Dinoseb	μg/kg							
Arsenic	mg/kg		<1.07					
Arsenic (SPLP)	mg/L							
Barium	mg/kg		15.6					
Barium (SPLP)	mg/L							
Beryllium	mg/kg							
Cadmium	mg/kg		<3.22					
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L							
Chromium	mg/kg		7.95					
Chromium (SPLP)	mg/L							
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg		<21.5					
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg		<0.189					
Mercury (SPLP)	mg/L							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 92 of 306

								Page 92 of 3
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
· · · · · · · · · · · · · · · · · · ·	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Nickel	mg/kg		<10.7					
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg		<0.943					
Selenium (SPLP)	mg/L							
Silver	mg/kg		<5.37					
Silver (SPLP)	mg/L							
Zine	mg/kg		13.8					
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg		<37.8					
Acenaphthene	μg/kg		<380					
Acenaphthylene	μg/kg		<380					
Acetophenone	μg/kg							

Page 93 of 306

								Page 93 of 3
	Location ID	NK-SB-37						
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg		<380					
Benzidine	μg/kg		<380 .					
Benzo[a]anthracene	μg/kg		<380					
Benzo[a]pyrene	µg/kg		<380					
Benzo[b]fluoranthene	μg/kg		<380					
Benzo[ghi]perylene	μg/kg		<380					
Benzo[k]fluoranthene	μg/kg		<380					
Benzoic Acid	μ g/ kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg		<380					
Bis(2-chloroethyl) Ether	μg/kg		<380					
Bis(2-ethylhexyl) Phthalate	μ g /kg		<380					
Bromophenyl Phenyl Ether,4-	μg/kg		<380					
Butyl Benzyl Phthalate	μg/kg		<380					
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg		<380					
Chlorophenol,2-	μg/kg		<380					
Chlorophenyl Phenyl Ether,4-	μg/kg		<380					
Chrysene	μg/kg		<380					
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg		<380					
Di-n-octyl Phthalate	μg/kg		<380					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 94 of 306

	Landin ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Location ID	 						
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg		<380					
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg		<380					
Dichlorophenol,2,4-	μg/kg	<u> </u>	<380					
Diethyl Phthalate	μg/kg		<380					
Dimethyl Phthalate	μg/kg		<380					
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine, alpha, alpha-	μg/kg	<u></u>						
Dimethylphenol,2,4-	μg/kg		<380					
Dinitro-o-cresol,4,6-	μg/kg		<380					
Dinitrobenzene, 1.3-	μg/kg	<u> </u>						
Dinitrophenol,2,4-	μg/kg		<380					
Dinitrotoluene,2,4-	μg/kg	<u> </u>	<380					
Dinitrotoluene,2.6-	μg/kg		<380					
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg		<380					
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg		<380					
Fluorene	μg/kg		<380					
Hexachlorobenzene	μg/kg		<380					
Hexachlorobutadiene	μg/kg		<380					
Hexachlorocyclopentadiene	μg/kg		<380					
Hexachloroethane	μg/kg		<380					
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg	1	<380				-	

LEA

Page 95 of 306

								Page 95 of
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Isophorone	μg/kg		<380					
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg		<380					
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg		<380					
N-nitrosodiphenylamine	μg/kg		<380					
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg		<380					
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine,alpha-	μg/kg							=
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg		<380					
Nitrophenol,2-	μg/kg		<380					
Nitrophenol,4-	μg/kg		<380					
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg		<380					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 96 of 306

								Page 96 of 30
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg		<380					
Phenol	μg/kg		<380					
Phenylenediamine,1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg	<u> </u>						
Propane),2,2'-oxybis(2-chloro-	μg/kg		<380					
Pyrene	μg/kg		<380					
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg	<u></u>						
Toluidine,o-	μg/kg							
Trichlorobenzene,1,2,4-	μg/kg		<380					
Trichlorophenol,2,4,5-	μg/kg	<u> </u>						
Trichlorophenol,2,4,6-	μg/kg		<380					
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg		<34					
Acetonitrile	μg/kg							
Acrolein	μg/kg		<11					
Acrylonitrile	μg/kg		<11					
Allyl Chloride	μg/kg							
Benzene	μg/kg		<4.5					
Benzene (screening)	μg/kg	<15		<17 nc	<12	<13	<15	<15
Bromobenzene	μg/kg		<4.5					
	μg/kg		<4.5					

Page 97 of 306

								Page 97 of 30
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Carbon Disulfide	μg/kg		<4.5					
Carbon Tetrachloride	μg/kg		<4.5					
Chlorobenzene	μg/kg		<4.5					
Chlorodibromomethane	μg/kg		<4.5					
Chloroethane	μg/kg		<4.5					
Chloroethyl Vinyl Ether,2-	μg/kg		<4.5				-	
Chloroform	μg/kg		<4.5					
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg		<4.5					
Chlorotoluene,p-	μg/kg		<4.5					
Dibromomethane	μg/kg		<4.5					
Dichlorobenzene,1,2-	μg/kg		<4.5					
Dichlorobenzene,1,3-	μg/kg		<4.5					
Dichlorobenzene,1,4-	μg/kg		<4.5					
Dichlorobromomethane	μg/kg		<4.5					
Dichlorodifluoromethane	μg/kg		<4.5					
Dichloroethane, 1, 1-	μg/kg		<4.5					
Dichloroethane, 1,2-	μg/kg		<4.5					
Dichloroethylene,1,1-	μg/kg		<4.5					
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg	<u> </u>	<4.5					
Dichloroethylene,1,2-trans-	μg/kg		<4.5					
Dichloropropane,1,2-	μg/kg		<4.5					
Dichloropropylene, 1,3-	μg/kg							
Dichloropropylene, 1,3-cis-	μg/kg		<4.5					
Dichloropropylene, 1, 3-trans-	μg/kg		<4.5					
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg	1						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 98 of 306

								Page 98 01 3
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Ethylbenzene	μg/kg		<4.5					
Ethylbenzene (screening)	μg/kg	<22		<24 nc	<17	<19	<22	<22
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg		<11 .					
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg		<4.5					
Methyl Chloride	μg/kg		<4.5					
Methyl Ethyl Ketone	μg/kg		<11					
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg		<11					
Methyl-tert-butyl Ether	μg/kg		<4.5					
Methylene Chloride	μg/kg		<4.5					
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg		<4.5					
Tetrachloroethane, 1, 1, 1, 2-	μg/kg		<4.5					
Tetrachloroethane, 1, 1, 2, 2-	μg/kg		<4.5					
Tetrachloroethylene	μg/kg		<4.5					
Tetrachloroethylene (screening)	μg/kg	<23		<25 nc	<18	<20	<23	<23
Toluene	μg/kg		<4.5					
Toluene (screening)	μg/kg	<21		<23 nc	<17	<18	<21	<21
Trichloroethane, 1, 1, 1-	μg/kg		<4.5					
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<368		<406 nc	<287	<320	<368	<368
Trichloroethane, 1, 1, 2-	μg/kg		<4.5					

Page 99 of 306

								Page 99 of 3
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
the state of the s	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Trichloroethylene	μg/kg		<4.5					
Trichloroethylene (screening)	μg/kg	<36		<39 nc	<28	<31	<36	<36
Trichloromonofluoromethane	μg/kg		<4.5					
Trichloropropane,1,2,3-	μg/kg		<4.5					
Vinyl Acetate	μg/kg		<4.5					
Vinyl Chloride	μg/kg		<4.5					
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg		<4.5					
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
				<u> </u>				
			<u> </u>					
			- 					
		I						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 100 of 306

								Page 100 of
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Date Metals Analyzed	-	08/01/1996					08/01/1996	
Date Organics Analyzed	-	08/02/1996		07/24/1996	07/24/1996	07/24/1996	08/02/1996	07/24/1996
Date PCBs Analyzed	-							
Date Physical Analysed	-	08/07/1996					08/07/1996	
Date Semi-volatile Organics Analyzed	•	08/08/1996					08/08/1996	
Date of Metals SPLP Analysis	-		10/24/1996					
Date of Metals SPLP Extraction	-		<					
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	•		10/16/1996					
Extraction Fluid No.	-		1					
Dinoseb	μg/kg							
Arsenic	mg/kg	≤1.12					<1.22	
Arsenic (SPLP)	mg/L		<0.010					
Barium	mg/kg	14.8					26.2	
Barium (SPLP)	mg/L		<1.00					
Beryllium	mg/kg							
Cadmium	mg/kg	<3.36					<3.67	
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L		<0.0010					
Chromium	mg/kg	7.27					12.1	
Chromium (SPLP)	mg/L		<0.050					
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg	<22.4					<24.5	
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L		<0.0050					
Mercury	mg/kg	<0.224					<0.245	
Mercury (SPLP)	mg/L		<0.0020					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 101 of 306

								Page 101 of 300
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Nickel	mg/kg	<11.2					<12.2	
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L		<0.10					
Selenium	mg/kg	<1.12					<1.22	_
Selenium (SPLP)	mg/L		<0.010					
Silver	mg/kg	<5.59					<6.12	
Silver (SPLP)	mg/L		<0.020					
Zinc	mg/kg	25.6					30.3	
Zinc (TCLP)	mg/l						<u></u>	
Zinc (SPLP)	mg/L	<u> </u>	0.205					
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane, 1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg	<35.6					55.8	
Acenaphthene	μg/kg	<360					<410	
Acenaphthylene	μg/kg	<360					<410	
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 102 of 306

								Page 102 01 300
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg	<360					<410	
Benzidine	μg/kg	<360					<410	
Benzo[a]anthracene	μg/kg	<360					<410	
Benzo[a]pyrene	μg/kg	<360					<410	
Benzo[b]fluoranthene	μg/kg	<360					<410	
Benzo[ghi]perylene	μg/kg	<360					<410	
Benzo[k]fluoranthene	μg/kg	<360					<410	
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg	<360					<410	
Bis(2-chloroethyl) Ether	μg/kg	<360					<410	
Bis(2-ethylhexyl) Phthalate	μg/kg	<360					<410	
Bromophenyl Phenyl Ether,4-	μg/kg	<360					<410	
Butyl Benzyl Phthalate	μg/kg	<360					<410	
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg	<360					<410	
Chlorophenol,2-	μg/kg	<360					<410	
Chlorophenyl Phenyl Ether,4-	μg/kg	<360					<410	
Chrysene	μg/kg	<360					<410	
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg	<360					<410	
Di-n-octyl Phthalate	μg/kg	<360					<410	

Page 103 of 306

								Page 103 of
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg	<360					<410	
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg	<360					<410	
Dichlorophenol,2,4-	μg/kg	<360					<410	
Diethyl Phthalate	μg/kg	<360					<410	
Dimethyl Phthalate	μg/kg	<360					<410	
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol.2,4-	μg/kg	<360					<410	
Dinitro-o-cresol,4,6-	μg/kg	<360					<410	
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol,2.4-	μg/kg	<360					<410	
Dinitrotoluene,2,4-	μg/kg	<360					<410	
Dinitrotoluene,2,6-	μg/kg	<360					<410	
Diphenylamine	μg/kg							
Diphenylhydrazine, 1,2-	μg/kg	<360					<410	
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg	<360					<410	
Fluorene	μg/kg	<360					<410	
Hexachlorobenzene	μg/kg	<360					<410	
Hexachlorobutadiene	μg/kg	<360					<410	
Hexachlorocyclopentadiene	μg/kg	<360					<410	
Hexachloroethane	μg/kg	<360					<410	
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg	<360					<410	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 104 of 306

						<u> </u>		Page 104 of 306
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
10 Marie 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
1.7	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Isophorone	μg/kg	<360					<410	
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg	<360					<410	
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg	<360					<410	
N-nitrosodiphenylamine	μg/kg	<360					<410	
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg	<360					<410	
Naphthoquinone,1,4-	μg/kg							
Naphthylamine, alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg	<360					<410	
Nitrophenol,2-	μg/kg	<360					<410	
Nitrophenol,4-	μg/kg	<360					<410	
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg	<360					<410	

Page 105 of 306

								Page 105 of 300
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg	<360					<410	
Phenol	μg/kg	<360					<410	
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg	<360					<410	
Ругепе	μg/kg	<360					<410	
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene,1,2,4-	μg/kg	<360					<410	
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg	<360					<410	
Triethyl Phosphorothioate.o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg	<33					<51	
Acetonitrile	μg/kg							
Acrolein	μg/kg	<16					<14	
Acrylonitrile	μg/kg	<16					<14	
Allyl Chloride	μg/kg							
Benzene	μg/kg	<6.6					<5.8	
Benzene (screening)	μg/kg			<14	<14	<15		<14
Bromobenzene	μg/kg	<6.6					<5.8	
Bromoform	μg/kg	<6.6					<5.8	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 106 of 306

								Fage 100 01 300
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Carbon Disulfide	μg/kg	<6.6					<5.8	
Carbon Tetrachloride	μg/kg	<6.6					<5.8	
Chlorobenzene	μg/kg	<6.6					<5.8	
Chlorodibromomethane	μg/kg	<6.6	1				<5.8	
Chloroethane	μg/kg	<6.6					<5.8	
Chloroethyl Vinyl Ether,2-	μg/kg	<6.6					<5.8	
Chloroform	μg/kg	<6.6					<5.8	
Chloroprene,beta-	μg/kg							
Chlorotoluene,o-	μg/kg	<6.6					<5.8	
Chlorotoluene,p-	μg/kg	<6.6					<5.8	
Dibromomethane	μg/kg	<6.6					<5.8	
Dichlorobenzene,1,2-	μg/kg	<6.6					<5.8	
Dichlorobenzene,1,3-	μg/kg	<6.6					<5.8	
Dichlorobenzene, 1,4-	μg/kg	<6.6					<5.8	
Dichlorobromomethane	μg/kg	<6.6					<5.8	
Dichlorodifluoromethane	μg/kg	<6.6					<5.8	
Dichloroethane, 1,1-	μg/kg	<6.6					<5.8	
Dichloroethane, 1,2-	μg/kg	<6.6					<5.8	
Dichloroethylene, 1, 1-	μg/kg	<6.6					<5.8	
Dichloroethylene, 1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg	<6.6					<5.8	
Dichloroethylene, 1,2-trans-	μg/kg	<6.6					<5.8	
Dichloropropane,1,2-	μg/kg	<6.6					<5.8	
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene,1,3-cis-	μg/kg	<6.6					<5.8	
Dichloropropylene, 1,3-trans-	μg/kg	<6.6					<5.8 ,	
Dioxane,1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 107 of 306

								Page 107 01 3
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Ethylbenzene	μg/kg	<6.6					<5.8	
Ethylbenzene (screening)	μg/kg			<20	<20	<21		1390
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg	<16					<14	
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg	<6.6					<5.8	
Methyl Chloride	μg/kg	<6.6					<5.8	
Methyl Ethyl Ketone	μg/kg	<16					<14	
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg	<16		_			<14	
Methyl-tert-butyl Ether	μg/kg	<6.6					<5.8	
Methylene Chloride	μg/kg	<6.6					<5.8	
Pentachlorobenzene	μg/kg							
Pentachioroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg	<6.6					<5.8	
Tetrachloroethane.1,1.1.2-	μg/kg	<6.6					<5.8	
Tetrachloroethane, 1, 1, 2, 2-	μg/kg	<6.6					<5.8	
Tetrachloroethylene	μg/kg	<6.6 N1					<5.8	
Tetrachloroethylene (screening)	μg/kg			<21	<21	<23		<38
Toluene	μg/kg	<6.6					<5.8	
Toluene (screening)	μg/kg			<20	<19	<21		<21
Trichloroethane, 1, 1, 1-	μg/kg	<6.6					<5.8	
Trichloroethane, 1, 1, 1 · (screening)	μg/kg			<342	<336	<361		<377
Trichloroethane, 1, 1, 2-	μg/kg	<6.6					<5.8	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 108 of 306

						_		rage 108 01 3
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Trichloroethylene	μg/kg	<6.6					<5.8	
Trichloroethylene (screening)	μg/kg			4 J	<33	<35		1830 E
Trichloromonotluoromethane	μg/kg	<6.6					<5.8	
Trichloropropane, 1, 2.3-	μg/kg	<6.6	1				<5.8	
Vinyl Acetate	μg/kg	<6.6					<5.8	
Vinyl Chloride	μg/kg	<6.6					<5.8	
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg	<6.6					<5.8	
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
		1						
		 						
			_					
								
					-			
			-					
				-		_		
		-	 	-				
		 	-	-				
		-		-				
		ļ		<u> </u>				
								
				<u> </u>				
lotan: 1 Printed on 06/20/09		<u> </u>	1		1			

Page 109 of 306

								Page 109 of 30
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Date Metals Analyzed	•	08/06/1996					08/06/1996	
Date Organics Analyzed	-	07/30/1996		07/23/1996	07/23/1996	07/24/1996	07/30/1996	07/24/1996
Date PCBs Analyzed	-							
Date Physical Analysed	•	08/07/1996					08/08/1996	
Date Semi-volatile Organics Analyzed	•	08/09/1996					08/09/1996	
Date of Metals SPLP Analysis	-		10/24/1996					
Date of Metals SPLP Extraction	-		<					
Date of Metals TCLP Analysis								
Date of Other SPLP Analysis	-		10/16/1996					
Extraction Fluid No.	-		1					
Dinoseb	μg/kg							
Arsenic	mg/kg	<1.03					<1.2	
Arsenic (SPLP)	mg/L		<0.010					
Barium	mg/kg	136					15.5	
Barium (SPLP)	mg/L		<1.00					
Beryllium	mg/kg							
Cadmium	mg/kg	<3.1					<3.59	
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L		<0.0010					
Chromium	mg/kg	7.43					7.05	
Chromium (SPLP)	mg/L		<0.050					
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg	27.3					<23.9	
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L		0.0062					
Mercury	mg/kg	< 0.206					<0.239	
Mercury (SPLP)	mg/L		<0.0020					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 110 of 306

								Page 110 of 3
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
·· · -	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Nickel	mg/kg	<10.3					<12	
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L		<0.10					
Selenium	mg/kg	<1.03					<1.2	
Selenium (SPLP)	mg/L		<0.010					
Silver	mg/kg	<5.16					<5.98	
Silver (SPLP)	mg/L		<0.020					
Zine	mg/kg	38.3					23.2	
Zine (TCLP)	mg/l							
Zinc (SPLP)	mg/L		0.165					
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane, 1,2-	μg/kg	1						
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg	257					<39.3	
Acenaphthene	μg/kg	<350					<400	
Acenaphthylene	μg/kg	<350					<400	
Acetophenone	μg/kg							

Page 111 of 306

								Page III of
	Location ID	NK-SB-39						
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg	<350					<400	
Benzidine	μg/kg	<350					<400	
Benzo[a]anthracene	μ g /kg	<350					<400	
Benzo[a]pyrene	μg/kg	<350					<400	
Benzo[b]fluoranthene	μ g/ kg	<350					<400	
Benzo[ghi]perylene	μg/kg	<350 N1					<400	
Benzo[k]fluoranthene	μg/kg	<350					<400	
Benzoic Acid	μg/kg							
Benzyl Alcohol	μ g/ kg							
Bis(2-chloroethoxy)methane	μg/kg	<350					<400	
Bis(2-chloroethyl) Ether	μg/kg	<350					<400	
Bis(2-ethylhexyl) Phthalate	μg/kg	<350					<400	
Bromophenyl Phenyl Ether,4-	μg/kg	<350					<400	
Butyl Benzyl Phthalate	μ g/k g	<350					<400	
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene.2-	μg/kg	<350					<400	
Chlorophenol,2-	μg/kg	<350					<400	
Chlorophenyl Phenyl Ether,4-	μg/kg	<350					<400	
Chrysene	μg/kg	<350 N1					<400	
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg	<350					<400	
Di-n-octyl Phthalate	μg/kg	<350					<400	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 112 of 306

								Page 112 01 30
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg	<350					<400	
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg	<350					<400	
Dichlorophenol,2,4-	μg/kg	<350					<400	
Diethyl Phthalate	μg/kg	<350					<400	
Dimethyl Phthalate	μg/kg	<350					<400	
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg	<350					<400	
Dinitro-o-cresol,4,6-	μg/kg	<350					<400	
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol,2,4-	μg/kg	<350					<400	
Dinitrotoluene,2,4-	μg/kg	<350					<400	
Dinitrotoluene,2,6-	μg/kg	<350					<400	
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg	<350					<400	
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg	<350 N1					<400	
Fluorene	μg/kg	<350					<400	
Hexachlorobenzene	μg/kg	<350					<400	
Hexachlorobutadiene	μg/kg	<350					<400	
Hexachlorocyclopentadiene	μg/kg	<350					<400	
Hexachloroethane	μg/kg	<350					<400	
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg	<350					<400	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 113 of 306

								Page 113 of 3
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Isophorone	μg/kg	<350					<400	
Isosafrole	μg/kg							
Methapyrilene	μg/kg					_		
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg	<350					<400	
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg	<350					<400	
N-nitrosodiphenylamine	μg/kg	<350					<400	
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg					_		
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg	<350					<400	
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine.alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline.3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg	<350					<400	
Nitrophenol,2-	μg/kg	<350					<400	
Nitrophenol,4-	μg/kg	<350					<400	
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg	<350					<400	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 114 of 306

								1 agc 114 01 30
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg	<350 N1					<400	
Phenol	μg/kg	<350					<400	
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg	<u> </u>						
Propane),2,2'-oxybis(2-chloro-	μg/kg	<350					<400	
Ругепе	μg/kg	<350 N1					<400	
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene,1,2.4-	μg/kg	<350					<400	
Trichlorophenol.2.4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg	<350					<400	
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg	<28					<25	
Acetonitrile	μg/kg							
Acrolein	μg/kg	<14					<13	
Acrylonitrile	μg/kg	<14					<13	
Allyl Chloride	μg/kg							
Benzene	μg/kg	<5.6					<5.1	
Benzene (screening)	μg/kg			<15	<15	<16		<13
Bromobenzene	μg/kg	<5.6					<5.1	
Bromoform	μg/kg	<5.6		 			<5.1	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 115 of 306

	Location ID	NK-SB-39						
·	Sample II)	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Carbon Disulfide	μg/kg	<5.6					<5.1	
Carbon Tetrachloride	μg/kg	<5.6					<5.1	
Chlorobenzene	μg/kg	<5.6					<5.1	
Chlorodibromomethane	μg/kg	<5.6					<5.1	
Chloroethane	μg/kg	<5.6					<5.1	
Chloroethyl Vinyl Ether,2-	μg/kg	<5.6					<5.1	
Chloroform	μg/kg	<5.6					<5.1	
Chloroprene, beta-	μ g/k g							
Chlorotoluene,o-	μg/kg	<5.6					<5.1	
Chlorotoluene,p-	μg/kg	<5.6					<5.1	
Dibromomethane	μ g/k g	<5.6					<5.1	
Dichlorobenzene.1,2-	μg/kg	<5.6					<5.1	
Dichlorobenzene,1,3-	μg/kg	<5.6					<5.1	
Dichlorobenzene,1,4-	μg/kg	<5.6					<5.1	
Dichlorobromomethane	μ g/k g	<5.6					<5.1	
Dichlorodifluoromethane	μg/kg	<5.6					<5.1	
Dichloroethane, 1, 1-	μg/kg	<5.6					<5.1	
Dichloroethane,1,2-	μg/kg	< 5.6					<5.1	
Dichloroethylene,1,1-	μg/kg	<5.6					<5.1	
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg	<5.6					<5.1	
Dichloroethylene, 1,2-trans-	μg/kg	<5.6					<5.1	
Dichloropropane,1,2-	μg/kg	<5.6					<5.1	
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene, 1, 3-cis-	μg/kg	<5.6					<5.1	
Dichloropropylene, 1,3-trans-	μg/kg	<5.6					<5.1	
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 116 of 306

								Page 116 of 3
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Ethylbenzene	μg/kg	<5.6					<5.1	
Ethylbenzene (screening)	μg/kg			<21	<21	<23		<19
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg	<14					<13	
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg	<5.6					<5.1	
Methyl Chloride	μg/kg	<5.6					<5.1	
Methyl Ethyl Ketone	μg/kg	<14					<13	
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg	<14					<13	
Methyl-tert-butyl Ether	μg/kg	<5.6					<5.1	
Methylene Chloride	μg/kg	<5.6					<5.1	
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg	<u> </u>						
Styren e	μg/kg	<5.6					<5.1	
Tetrachloroethane, 1, 1, 1, 2-	μg/kg	<5.6				_	<5.1	
Γetrachloroethane,1,1.2,2-	μg/kg	<5.6					<5.1	
Tetrachloroethylene	μg/kg	<5.6 N1					<5.1	
Tetrachloroethylene (screening)	μg/kg			<23	<23	<24		<20
Toluene	μg/kg	<5.6					<5.1	
Toluene (screening)	μg/kg			<21	<21	<22		<18
Trichloroethane,1,1,1-	μg/kg	<5.6					<5.1	
Trichloroethane, 1, 1, 1 - (screening)	μg/kg			<361	<361	<382		<320
Trichloroethane.1,1,2-	μg/kg	<5.6					<5.1	

Page 117 of 306

								Page 117 of
	Location ID	NK-SB-39						
	Sample ID	1016105	1016105	1016105	1016106	1016107	1016108	1016108
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	14:20	14:20	14:20	14:27	14:45	14:59	14:59
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	6' - 8'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008145	AEL96010905	96-3611-362	96-3610-361	96-3627-375	AEL96008146	96-3628-376
Constituent	Units							
Trichloroethylene	μg/kg	<5.6					<5.1	
Trichloroethylene (screening)	μg/kg			<35	<35	<37		20 J
Trichloromonotluoromethane	μg/kg	<5.6					<5.1	
Trichloropropane,1,2,3-	μ g/k g	<5.6					<5.1	
Vinyl Acetate	μg/kg	<5.6					<5.1	
Vinyl Chloride	μg/kg	<5.6					<5.1	
Xylene,o- (screening)	μg/kg			I				
Xylenes (Total)	μg/kg	<5.6					<5.1	
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
		<u> </u>	I			1	1	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 118 of 306

<u> </u>	<u> </u>							rage 116 01 300
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units							
Date Metals Analyzed	-					08/01/1996		
Date Organics Analyzed		07/24/1996	07/24/1996	07/24/1996	07/24/1996	07/30/1996		07/23/1996
Date PCBs Analyzed	•							
Date Physical Analysed	•					08/07/1996		
Date Semi-volatile Organics Analyzed	•					08/08/1996		
Date of Metals SPLP Analysis	•						10/24/1996	
Date of Metals SPLP Extraction	-						<	
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-						10/16/1996	
Extraction Fluid No.	-						1	
Dinoseb	μg/kg							
Arsenic	mg/kg					<1.11		
Arsenic (SPLP)	mg/L						<0.010	
Barium	mg/kg					18.1		
Barium (SPLP)	mg/L						<1.00	
Beryllium	mg/kg							
Cadmium	mg/kg					<3.33		
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L						<0.0010	
Chromium	mg/kg					8.22		
Chromium (SPLP)	mg/L						<0.050	
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg					26		
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L						<0.0050	
Mercury	mg/kg					0.258		
Mercury (SPLP)	mg/L						<0.0020	
(

Page 119 of 306

								Page 119 of
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units							
Nickel	mg/kg					<11.1		
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L						<0.10	
Selenium	mg/kg	<u></u>	,			<1.11		
Selenium (SPLP)	mg/L						<0.010	
Silver	mg/kg					<5.55		
Silver (SPLP)	mg/L						<0.020	
Zine	mg/kg					34.9		
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L						0.153	
PCB 1016	μg/kg	<u> </u>						
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg					58.4		
Acenaphthene	μg/kg					<390		
Acenaphthylene	μg/kg					<390		
Acetophenone	µg/kg	ŀ						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 120 of 306

								Fage 120 01 3
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg	<u> </u>						
Anthracene	μg/kg	<u> </u>				<390		
Benzidine	μg/kg					<390		
Benzo[a]anthracene	μg/kg	<u> </u>				<390 N1		
Benzo[a]pyrene	μg/kg					<390 N1		
Benzo[b]fluoranthene	μg/kg					<390 N1		
Benzo[ghi]perylene	μg/kg					<390 N1		
Benzo[k]fluoranthene	μg/kg					<390 N1		
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg					<390		
Bis(2-chloroethyl) Ether	μg/kg					<390		
Bis(2-ethylhexyl) Phthalate	μg/kg					<390		
Bromophenyl Phenyl Ether,4-	μg/kg					<390		
Butyl Benzyl Phthalate	μg/kg					<390		
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg					<390		
Chlorophenol,2-	μg/kg					<390		
Chlorophenyl Phenyl Ether.4-	μg/kg					<390		
Chrysene	μg/kg					<390 N1		
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg					<390		
Di-n-octyl Phthalate	μg/kg					<390		

Page 121 of 306

							Page 121 of
Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Units							
μg/kg					<390		
μg/kg	ł						
μg/kg							
μg/kg					<390		
μg/kg					<390		
μg/kg					<390		
μg/kg					<390		
μg/kg							
μg/kg							
μg/kg							
μg/kg							
μg/kg					<390		
μg/kg					<390		
μg/kg							
μg/kg					<390		
μg/kg					<390		
μg/kg					<390		
μg/kg							
μg/kg					<390		
μg/kg							
μg/kg					<390 N1		
μg/kg					<390		
μg/kg					<390		
μg/kg					<390		
μg/kg					<390		
μg/kg					<390		
μg/kg							
μg/kg					<390 N1		
	Sample ID Sample Date Sample Time Sample Depth Laboratory Lab. Number Units µg/kg	Sample ID 1016109 Sample Date 07/19/1996 Sample Time 15:02 Sample Depth 8'-10' Laboratory LEA Lab. Number 96-3629-381 Units µg/kg	Sample ID 1016109 1016110 Sample Date 07/19/1996 07/19/1996 Sample Time 15:02 15:09 Sample Depth 8' - 10' 10' - 12' Laboratory LEA LEA Lab. Number 96-3629-381 96-3630-382 Units	Sample ID 1016109 1016110 1016111 Sample Date 07/19/1996 07/19/1996 07/19/1996 Sample Time 15:02 15:09 15:12 Sample Depth 8'-10' 10'-12' 12'-14' Laboratory LEA LEA LEA LEA Lab. Number 96-3629-381 96-3630-382 96-3631-383 Units µg/kg	Sample ID 1016109 1016110 1016111 1016112 Sample Date 07/19/1996 07/19/1996 07/19/1996 07/19/1996 Sample Time 15:02 15:09 15:12 15:17 Sample Depth 8'-10' 10'-12' 12'-14' 14'-15' Laboratory LEA LEA LEA LEA LEA Lab. Number 96-3629-381 96-3630-382 96-3631-383 96-3632-384 Units µg/kg	Sample ID 1016109 1016110 1016111 1016112 1016088 Sample Date 07/19/1996 07/19/18 07/18 07/18 07/18 07/18 07/18 07/18 07/18 07/18 07/18 07/18 07/18 07/	Sample ID 1016109 1016110 1016111 1016112 1016088 1016088 Sample Date 07/19/1996 07/19/19/19/19/19/19/19/19/19/19/19/19/19/

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 122 of 306

								1 age 122 01 30
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
•	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units							
Isophorone	μg/kg					<390		
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg		,					
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg					<390		
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg					<390		
N-nitrosodiphenylamine	μg/kg					<390		
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg					<390		
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine.alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine.5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg					<390		
Nitrophenol,2-	μg/kg					<390		
Nitrophenol,4-	μg/kg					<390		
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg	1	7			<390		

Page 123 of 306

								Page 123 of 30
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg					<390 N1		
Phenol	μg/kg	-				<390		
Phenylenediamine, 1,4-	μg/kg		,					
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg					<390		
Pyrene	μg/kg					<390 N1		
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg					<390		
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg					<390		
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg					<52		
Acetonitrile	μg/kg							
Acrolein	μg/kg					<26		
Acrylonitrile	μg/kg					<26		
Allyl Chloride	μg/kg							
Benzene	μg/kg					<10		
Benzene (screening)	μg/kg	<16	<16	<14	<13			<15
Bromobenzene	μg/kg					<10		
Bromoform	μg/kg					<10	1	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 124 of 306

							<u> </u>	Page 124 of 3
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units					AND AND A STREET OF STREET		
Carbon Disulfide	μg/kg					<10		
Carbon Tetrachloride	μg/kg					<10		
Chlorobenzene	μg/kg					<10		
Chlorodibromomethane	μg/kg					<10		
Chloroethane	μg/kg					<10		
Chloroethyl Vinyl Ether,2-	μg/kg					<10		
Chloroform	μg/kg					<10		
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg					<10		
Chlorotoluene,p-	μg/kg					<10		
Dibromomethane	μg/kg	1				<10		
Dichlorobenzene,1,2-	μg/kg					<10		
Dichlorobenzene,1,3-	μg/kg					<10		
Dichlorobenzene,1,4-	μg/kg					<10		
Dichlorobromomethane	μg/kg					<10		
Dichlorodifluoromethane	μg/kg					<10		
Dichloroethane, 1, 1-	μg/kg					<10		
Dichloroethane, 1,2-	μg/kg					<10		
Dichloroethylene, 1, 1-	μg/kg					<10		
Dichloroethylene, 1,2-	μg/kg							
Dichloroethylene, 1,2-cis-	μg/kg					<10		
Dichloroethylene, 1,2-trans-	μg/kg					<10		
Dichloropropane, 1,2-	μg/kg					<10		
Dichloropropylene, 1,3-	μg/kg							
Dichloropropylene,1,3-cis-	μg/kg					<10		
Dichloropropylene, 1,3-trans-	μg/kg					<10		
Dioxane,1,4-	μg/kg							
Ethyl Methacrylate	μg/kg	T						

Page 125 of 306

								Fage 123 01 30
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units							
Ethylbenzene	μg/kg					<10		
Ethylbenzene (screening)	μg/kg	<23	<23	<20	<19			<22
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg					<26		
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg					<10		
Methyl Chloride	μg/kg					<10		
Methyl Ethyl Ketone	μg/kg					<26		
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg					<26		
Methyl-tert-butyl Ether	μg/kg					<10		
Methylene Chloride	μg/kg					<10		
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg					<10		
Tetrachloroethane, 1, 1, 1, 2-	μg/kg				1	<10		
Tetrachloroethane, 1, 1, 2, 2-	μg/kg					<10		
Tetrachloroethylene	μg/kg					<10 N1		
Tetrachloroethylene (screening)	μg/kg	<24	<24	<21	<20			<23
Toluene	μg/kg					<10		
Toluene (screening)	μg/kg	<23	<22	<19	<18			<21
Trichloroethane, 1, 1, 1-	μg/kg					<10		
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<390	<382	<331	<320	1		<368
Trichloroethane, 1, 1, 2-	μg/kg					<10		

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 126 of 306

								Page 126 of 30
	Location ID	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-39	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016109	1016110	1016111	1016112	1016088	1016088	1016088
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	15:02	15:09	15:12	15:17	10:00	10:00	10:00
	Sample Depth	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'
	Laboratory	LEA	LEA	LEA	LEA	AEL	AEL	LEA
	Lab. Number	96-3629-381	96-3630-382	96-3631-383	96-3632-384	AEL96008135	AEL96010906	96-3592-340
Constituent	Units							
Trichloroethylene	μg/kg					<10		
Trichloroethylene (screening)	μg/kg	<38	<37	<32	<31			<36
Trichloromonotluoromethane	μg/kg					<10		
Trichloropropane,1,2,3-	μg/kg					<10		
Vinyl Acetate	μg/kg					<10		
Vinyl Chloride	μg/kg					<10		
Xylene,o- (screening)	μg/kg	1						
Xylenes (Total)	μg/kg					<10		
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
		1						
		1						

Page 127 of 306

								Page 127 of 3
	Location ID	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Date Metals Analyzed					08/01/1996			
Date Organics Analyzed	•	07/23/1996	07/23/1996	07/23/1996	07/30/1996	07/23/1996	07/23/1996	07/23/1996
Date PCBs Analyzed								
Date Physical Analysed	-				08/07/1996			
Date Semi-volatile Organics Analyzed					08/08/1996			
Date of Metals SPLP Analysis								
Date of Metals SPLP Extraction	-							
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-							
Extraction Fluid No.	•							
Dinoseb	μg/kg							
Arsenic	mg/kg				<1.17			
Arsenic (SPLP)	mg/L							
Barium	mg/kg				18.1			
Barium (SPLP)	mg/L							
Beryllium	mg/kg							
Cadmium	mg/kg	ļ. <u>.</u>			<3.51			
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L							
Chromium	mg/kg				5.85			
Chromium (SPLP)	mg/L							
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg				<23.4			
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg				<0.234			
Mercury (SPLP)	mg/L							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 128 of 306

								Page 128 01 3
	Location ID	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Nickel	mg/kg				<11.7			
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg				<1.17			
Selenium (SPLP)	mg/L							
Silver	mg/kg				<5.85			
Silver (SPLP)	mg/L	I						
Zinc	mg/kg				14.2			
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene.2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg	<u> </u>						
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg				<39.3			
Acenaphthene	μg/kg				<400			
Acenaphthylene	μg/kg				<400			
Acetophenone	μg/kg							

Page 129 of 306

								Page 129 of 3
	Location ID	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg				<400			
Benzidine	μg/kg				<400			
Benzo[a]anthracene	μg/kg				<400			
Benzo[a]pyrene	μg/kg				<400			
Benzo[b]fluoranthene	μg/kg				<400			
Benzo[ghi]perylene	μg/kg				<400			
Benzo[k]fluoranthene	μg/kg				<400			
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg				<400			
Bis(2-chloroethyl) Ether	μg/kg				<400			
Bis(2-ethylhexyl) Phthalate	μg/kg				<400			
Bromophenyl Phenyl Ether,4-	μg/kg				<400			
Butyl Benzyl Phthalate	μg/kg				<400			
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg				<400			
Chlorophenol,2-	μg/kg				<400			
Chlorophenyl Phenyl Ether,4-	μg/kg	1			<400			
Chrysene	μg/kg				<400			
Cresol,2-	μg/kg							
Cresol,3-	μg/kg	-						
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg				<400			
Di-n-octyl Phthalate	μg/kg				<400			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 130 of 306

								Page 130 of 306
	Location ID	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg				<400			
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg				<400			
Dichlorophenol,2,4-	μg/kg				<400			
Diethyl Phthalate	μg/kg				<400			
Dimethyl Phthalate	μg/kg				<400			
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg				<400			
Dinitro-o-cresol,4,6-	μg/kg				<400			
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol,2,4-	μg/kg				<400			
Dinitrotoluene,2,4-	μg/kg				<400			
Dinitrotoluene, 2.6-	μg/kg				<400			
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg				<400	-		
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg	<u> </u>			<400			
Fluorene	μg/kg				<400			
Hexachlorobenzene	μg/kg				<400			
Hexachlorobutadiene	μg/kg				<400			
Hexachlorocyclopentadiene	μg/kg				<400			
Hexachloroethane	μg/kg				<400			
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg				<400			

Page 131 of 306

	Location ID	NK-SB-40						
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Isophorone	μg/kg				<400			
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg				<400			
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg				<400			
N-nitrosodiphenylamine	μg/kg				<400			
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg	<u> </u>						
Naphthalene	μg/kg				<400			
Naphthoquinone,1,4-	μg/kg							-
Naphthylamine,alpha-	μ g/k g							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg				<400			
Nitrophenol,2-	μg/kg				<400			
Nitrophenol,4-	μg/kg				<400			
Nitroquinoline-1-oxide,4-	μg/kg						•	
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg				<400			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 132 of 306

								Fage 132 01 3
	Location ID	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg				<400			
Phenol	μg/kg				<400			
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg				<400			
Pyrene	μg/kg				<400			
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1.2.4-	μg/kg	-			<400			
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg				<400			
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene, 1, 3.5-	μg/kg							
Acetone	μg/kg				<36			
Acetonitrile	μg/kg							
Acrolein	μg/kg				<18			
Acrylonitrile	μg/kg				<18			
Allyl Chloride	μg/kg							
Benzene	μg/kg				<7.1			
Benzene (screening)	μg/kg	<16 nc	<16	<13		<15	<15	<15
Bromobenzene	μg/kg				<7.1			
Bromoform	μg/kg	I .			<7.1			

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 93 of 306

								Page 93 of .
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg		<380					
Benzidine	μg/kg		<380					
Benzo[a]anthracene	μg/kg		<380					
Benzo[a]pyrene	μg/kg		<380					
Benzo[b]fluoranthene	μg/kg		<380					
Benzo[ghi]perylene	μg/kg		<380					
Benzo[k]fluoranthene	μg/kg		<380					
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg	}	<380					
Bis(2-chloroethyl) Ether	μg/kg		<380					
Bis(2-ethylhexyl) Phthalate	μg/kg		<380					
Bromophenyl Phenyl Ether,4-	μg/kg	_	<380					
Butyl Benzyl Phthalate	μg/kg		<380					
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg		<380					
Chlorophenol,2-	μg/kg		<380					
Chlorophenyl Phenyl Ether,4-	μg/kg		<380					
Chrysene	μg/kg		<380					
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg		<380					
Di-n-octyl Phthalate	μg/kg		<380					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 94 of 306

								Page 94 01 300
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg		<380					
Dibenzofuran	μg/kg							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg		<380					
Dichlorophenol, 2.4-	μg/kg		<380					
Diethyl Phthalate	μg/kg		<380					
Dimethyl Phthalate	μg/kg		<380					
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg		<380					
Dinitro-o-cresol,4,6-	μg/kg		<380					
Dinitrobenzene, 1,3-	μg/kg							
Dinitrophenol,2,4-	μg/kg		<380					
Dinitrotoluene,2,4-	μg/kg		<380					
Dinitrotoluene,2.6-	μg/kg		<380					
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg		<380					
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg		<380					
Fluorene	μg/kg		<380					
Hexachlorobenzene	μg/kg		<380					
Hexachlorobutadiene	μg/kg		<380					
Hexachlorocyclopentadiene	μg/kg		<380					
Hexachloroethane	μg/kg		<380					
Hexachloropropylene			1					
Treatementopropyrene	μg/kg	L						I

Page 95 of 306

								Page 95 of .
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Isophorone	μg/kg		<380	_				
Isosafrole	μg/kg	<u> </u>						
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg		1					
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg		<380					
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg		<380					
N-nitrosodiphenylamine	μg/kg		<380					
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg		<380					
Naphthoquinone, 1,4-	μg/kg							-
Naphthylamine,alpha-	μg/kg							
Naphthylamine,beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg		<380					
Nitrophenol,2-	μg/kg		<380					
Nitrophenol,4-	μg/kg		<380					
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg	1	<380					

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 96 of 306

								Page 96 of 30
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg		<380					
Phenol	μg/kg		<380					
Phenylenediamine, 1,4-	μg/kg							
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg		<380					
Pyrene	μg/kg		<380					
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene,1,2,4,5-	μg/kg							
Tetrachlorophenol,2,3,4,6-	μg/kg							
Toluidine,o-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg		<380					
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg		<380					
Triethyl Phosphorothioate,o,o,o-	μg/kg							
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg		<34					
Acetonitrile	μg/kg							
Acrolein	μg/kg		<11					
Acrylonitrile	μg/kg		<11					
Allyl Chloride	μg/kg							
Benzene	μg/kg		<4.5					
Benzene (screening)	μg/kg	<15		<17 nc	<12	<13	<15	<15
Bromobenzene	μg/kg		<4.5					
Bromoform	μg/kg		<4.5					

Page 97 of 306

								Page 97 of .
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Carbon Disulfide	μg/kg		<4.5					
Carbon Tetrachloride	μg/kg		<4.5					
Chlorobenzene	μg/kg		<4.5		}			
Chlorodibromomethane	μg/kg		<4.5					
Chloroethane	μg/kg		<4.5					
Chloroethyl Vinyl Ether,2-	μg/kg		<4.5				-	
Chloroform	μg/kg		<4.5					
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg		<4.5					
Chlorotoluene,p-	μg/kg		<4.5					
Dibromomethane	μg/kg		<4.5					
Dichlorobenzene, 1,2-	μg/kg		<4.5					
Dichlorobenzene, 1,3-	μg/kg		<4.5					
Dichlorobenzene, 1,4-	μg/kg		<4.5					
Dichlorobromomethane	μg/kg		<4.5					
Dichlorodifluoromethane	μg/kg		<4.5					
Dichloroethane, 1, 1-	μg/kg		<4.5					
Dichloroethane, 1,2-	μg/kg		<4.5					
Dichloroethylene,1,1-	μg/kg		<4.5					
Dichloroethylene.1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg		<4.5					
Dichloroethylene, 1,2-trans-	μg/kg		<4.5					
Dichloropropane, 1,2-	μg/kg		<4.5					
Dichloropropylene, 1.3-	μg/kg							
Dichloropropylene, 1, 3-cis-	μg/kg		<4.5					
Dichloropropylene, 1, 3-trans-	μg/kg		<4.5					
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 98 of 306

								Page 98 of 30
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Ethylbenzene	μg/kg		<4.5					
Ethylbenzene (screening)	μg/kg	<22		<24 nc	<17	<19	<22	<22
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg		<11					
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg		<4.5					
Methyl Chloride	μg/kg		<4.5					
Methyl Ethyl Ketone	μg/kg		<11					
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg		<11					
Methyl-tert-butyl Ether	μg/kg		<4.5					
Methylene Chloride	μg/kg		<4.5					
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg		<4.5					
Tetrachloroethane,1,1,1,2-	μg/kg		<4.5					
Tetrachloroethane, 1, 1, 2, 2-	μg/kg		<4.5					
Tetrachloroethylene	μg/kg		<4.5					
Tetrachloroethylene (screening)	μg/kg	<23		<25 nc	<18	<20	<23	<23
Toluene	μg/kg		<4.5					
Toluene (screening)	μg/kg	<21		<23 nc	<17	<18	<21	<21
Trichloroethane, 1, 1, 1-	μg/kg		<4.5					
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<368		<406 nc	<287	<320	<368	<368
Trichloroethane, 1, 1, 2-	μg/kg	1	<4.5					

Page 99 of 306

								Page 99 01 3
	Location ID	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37	NK-SB-37
	Sample ID	1016117	1016118	1016118	1016119	1016120	1016121	1016122
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	11:26	11:31	11:31	11:40	11:46	11:55	12:01
	Sample Depth	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'
	Laboratory	LEA	AEL	LEA	LEA	LEA	LEA	LEA
	Lab. Number	96-3621-369	AEL96008142	96-3622-370	96-3633-385	96-3634-386	96-3635-387	96-3636-388
Constituent	Units							
Trichloroethylene	μg/kg		<4.5					
Trichloroethylene (screening)	μg/kg	<36		<39 nc	<28	<31	<36	<36
Trichloromonotluoromethane	μg/kg		<4.5					
Trichloropropane, 1, 2, 3-	μg/kg		<4.5					
Vinyl Acetate	μg/kg		<4.5					
Vinyl Chloride	μg/kg		<4.5					
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg		<4.5					
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
zytenes,m- ec p- (sereening)								
				<u> </u>				
							-	
				+				
								
		1						
		†						
		<u> </u>		 				
								
			-					
		 						
		-		 · · · · · · · · · · · · · · · · · ·				
		·		+				
		}		 				1
		 	 					
		ļ						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 100 of 306

								Page 100 of 3
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Date Metals Analyzed	•	08/01/1996]				08/01/1996	
Date Organics Analyzed	-	08/02/1996		07/24/1996	07/24/1996	07/24/1996	08/02/1996	07/24/1996
Date PCBs Analyzed	-							
Date Physical Analysed	•	08/07/1996					08/07/1996	
Date Semi-volatile Organics Analyzed	[•	08/08/1996					08/08/1996	
Date of Metals SPLP Analysis	-		10/24/1996					
Date of Metals SPLP Extraction	-		<					
Date of Metals TCLP Analysis	-							
Date of Other SPLP Analysis	-		10/16/1996					
Extraction Fluid No.	-		1					
Dinoseb	μg/kg							
Arsenic	mg/kg	<1.12					<1.22	
Arsenic (SPLP)	mg/L		<0.010					
Barium	mg/kg	14.8					26.2	
Barium (SPLP)	mg/L		<1.00					
Beryllium	mg/kg							
Cadmium	mg/kg	<3.36					<3.67	
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L		<0.0010					
Chromium	mg/kg	7.27					12.1	
Chromium (SPLP)	mg/L		<0.050					
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg	<22.4					<24.5	
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L		<0.0050					
Mercury	mg/kg	<0.224					<0.245	
Mercury (SPLP)	mg/L		<0.0020					

Page 101 of 306

								Page 101 of
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Nickel	mg/kg	<11.2					<12.2	
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L		<0.10					
Selenium	mg/kg	<1.12					<1.22	
Selenium (SPLP)	mg/L		<0.010					
Silver	mg/kg	<5.59					<6.12	
Silver (SPLP)	mg/L		<0.020					
Zine	mg/kg	25.6					30.3	
Zinc (TCLP)	mg/l							
Zine (SPLP)	mg/L		0.205					
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg	1						
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg	<35.6					55.8	
Acenaphthene	μg/kg	<360					<410	
Acenaphthylene	μg/kg	<360					<410	
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 102 of 306

								Page 102 of 3
	Location ID	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38	NK-SB-38
	Sample ID	1016131	1016131	1016131	1016132	1016320	1016321	1016323
	Sample Date	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996	07/22/1996
	Sample Time	14:50	14:50	14:50	14:59	15:04	15:10	15:17
	Sample Depth	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'	6' - 8'	10' - 12'
	Laboratory	AEL	AEL	LEA	LEA	LEA	AEL	LEA
	Lab. Number	AEL96008143	AEL96010904	96-3644-399	96-3645-400	96-3647-402	AEL96008144	96-3642-397
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg	<360					<410	
Benzidine	μg/kg	<360					<410	
Benzo[a]anthracene	μg/kg	<360					<410	
Benzo[a]pyrene	μg/kg	<360					<410	
Benzo[b]fluoranthene	μg/kg	<360					<410	
Benzo[ghi]perylene	μg/kg	<360					<410	
Benzo[k]fluoranthene	μg/kg	<360					<410	
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg	<360					<410	
Bis(2-chloroethyl) Ether	μg/kg	<360					<410	
Bis(2-ethylhexyl) Phthalate	μg/kg	<360					<410	
Bromophenyl Phenyl Ether,4-	μg/kg	<360					<410	
Butyl Benzyl Phthalate	μg/kg	<360					<410	
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg	<360					<410	
Chlorophenol,2-	μg/kg	<360					<410	
Chlorophenyl Phenyl Ether,4-	μg/kg	<360					<410	
Chrysene	μg/kg	<360					<410	
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg	<360					<410	
Di-n-octyl Phthalate	μg/kg	<360					<410	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 133 of 306

								Page 133 of
	Location ID	NK-SB-40						
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Carbon Disulfide	μg/kg				<7.1	,		
Carbon Tetrachloride	μg/kg				<7.1			
Chlorobenzene	μg/kg				<7.1			
Chlorodibromomethane	μg/kg				<7.1			
Chloroethane	μg/kg				< 7.1			
Chloroethyl Vinyl Ether,2-	μg/kg				<7.1			
Chloroform	μg/kg				<7.1			
Chloroprene,beta-	μ g/k g							
Chlorotoluene,o-	μ g/k g				<7.1			
Chlorotoluene,p-	μg/kg				<7.1			
Dibromomethane	μg/kg				<7.1			
Dichlorobenzene.1,2-	μg/kg				<7.1			
Dichlorobenzene,1,3-	μg/kg				<7.1			
Dichlorobenzene,1,4-	μg/kg				<7.1			
Dichlorobromomethane	μg/kg				<7.1			
Dichlorodifluoromethane	μg/kg				<7.1			
Dichloroethane, 1, 1-	μg/kg	<u> </u>			<7.1			
Dichloroethane, 1,2-	μg/kg				<7.1			
Dichloroethylene,1,1-	μg/kg				<7.1	<u> </u>		
Dichloroethylene,1,2-	μg/kg							
Dichloroethylene,1,2-cis-	μg/kg				<7.1			
Dichloroethylene, 1,2-trans-	μg/kg				<7.1			
Dichloropropane, 1, 2-	μg/kg				<7.1			
Dichloropropylene, 1,3-	μg/kg							
Dichloropropylene, 1,3-cis-	μg/kg				<7.1			
Dichloropropylene, 1, 3-trans-	μg/kg				<7.1			
Dioxane,1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 134 of 306

				· • · · · · · · · · · · · · · · · · · ·				Page 134 of .
	Location ID	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Ethylbenzene	μg/kg	L			<7.1			
Ethylbenzene (screening)	μg/kg	<24 nc	<23	<18		<22	<22	<22
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg				<18			
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg				<7.1			
Methyl Chloride	μg/kg				<7.1			
Methyl Ethyl Ketone	μg/kg				<18			
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg				<18			
Methyl-tert-butyl Ether	μg/kg				<7.1			
Methylene Chloride	μg/kg				<7.1			
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg				<7.1			
Tetrachloroethane, 1, 1, 1, 2-	μg/kg				<7.1			
Tetrachloroethane, 1, 1, 2, 2-	μg/kg				<7.1			
Tetrachloroethylene	μg/kg				<7.1			
Tetrachloroethylene (screening)	μg/kg	<25 nc	<24	<19		<23	<23	<23
Toluene	μg/kg				<7.1			
Toluene (screening)	μg/kg	<23 nc	<23	<18		<21	<22	<21
Trichloroethane, 1, 1, 1-	μg/kg				<7.1			
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<398 nc	<390	<310		<368	<375	<368
Trichloroethane,1,1,2-	μg/kg				<7.1			

Page 135 of 306

								Page 135 of 3
	Location ID	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40	NK-SB-40
	Sample ID	1016089	1016090	1016091	1016092	1016092	1016093	1016094
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	10:15	10:21	10:32	10:45	10:45	10:51	11:02
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	8' - 10'	10' - 12'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-3596-345	96-3597-346	96-3598-347	AEL96008136	96-3599-348	96-3601-350	96-3602-351
Constituent	Units							
Trichloroethylene	μg/kg				<7.1			
Trichloroethylene (screening)	μg/kg	<39 nc	<38	<30		82	<36	<36
Trichloromonofluoromethane	μg/kg				<7.1			
Trichloropropane, 1, 2.3-	μg/kg		1		<7.1			
Vinyl Acetate	μg/kg				<7.1			
Vinyl Chloride	μg/kg				<7.1			
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg				<7.1			
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
						1		

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 136 of 306

							1 age 130 01 300
Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	LEA	LEA	AEL	AEL	LEA	LEA	LEA
Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Units							
-			08/01/1996				
-	07/23/1996	07/23/1996	07/30/1996		07/23/1996	07/23/1996	07/23/1996
•							
-		ı	08/07/1996				
-			08/08/1996				
•				10/24/1996			
-				<			
-							
-				10/16/1996			
				1			
μg/kg							
mg/kg]		<1.1				
mg/L				<0.010			
mg/kg			18				
mg/L				1.02			
mg/kg							
mg/kg			<3.31				
mg/l							
mg/L				<0.0010			
mg/kg			7.94				
mg/L				<0.050			
mg/kg							
mg/l							
mg/kg			<22				
mg/l							
mg/L				0.0052			
mg/kg			0.276				
mg/L				<0.0020			
	Sample ID Sample Date Sample Time Sample Depth Laboratory Lab. Number Units	Sample ID 1016095 Sample Date 07/19/1996 Sample Time 11:10 Sample Depth 12' - 14' Laboratory LEA Lab. Number 96-3603-352 Units - 07/23/1996 - 07/23/1996 - 07/23/19	Sample ID 1016095 1016096 Sample Date 07/19/1996 07/19/1996 Sample Time 11:10 11:18 Sample Depth 12' - 14' 14' - 15' Laboratory LEA LEA Lab. Number 96-3603-352 96-3604-353 Units - - - - -	Sample ID 1016095 1016096 1016097	Sample ID 1016095 1016096 1016097 1016097 Sample Date 07/19/1996 07/19/1996 07/19/1996 07/19/1996 Sample Time 11:10 11:18 11:50 11:50 Sample Depth 12'-14' 14'-15' 0'-2' 0'-2' Laboratory LEA LEA AEL AEL Lab. Number 96-3603-352 96-3604-353 AEL96008137 AEL96010907 Units 08/07/1996 07/23/1996 07/23/1996 07/30/1996 - 07/23/1996 07/23/1996 07/30/1996 07/30/1996 - 08/08/1996 0 0 0 - 08/08/1996 0 0 0 - 08/08/1996 0 0 0 0 - 08/08/1996 0 <t< td=""><td> Sample ID 1016095 1016096 1016097 1016097 1016097 Sample Date 07/19/1996 07/23/1996 07/23</td><td> Sample ID 1016095 1016096 1016097 1016097 1016097 1016098 </td></t<>	Sample ID 1016095 1016096 1016097 1016097 1016097 Sample Date 07/19/1996 07/23/1996 07/23	Sample ID 1016095 1016096 1016097 1016097 1016097 1016098

Page 137 of 306

						··		Page 13 / of .
	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units							
Nickel	mg/kg			<11				
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L	<u> </u>			<0.10			
Selenium	mg/kg			<1.1				
Selenium (SPLP)	mg/L				<0.010			
Silver	mg/kg			<5.51				
Silver (SPLP)	mg/L				<0.020			
Zinc	mg/kg			33.1				
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L				0.229			
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane, 1,2-	μg/kg							
Dimethoate	μg/kg							-
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg			55.8				
Acenaphthene	μg/kg			<370				
Acenaphthylene	μg/kg			<370				
Acetophenone	μg/kg							1

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 138 of 306

	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg			<370				
Benzidine	μg/kg		,	<370				
Benzo[a]anthracene	μg/kg			<370				
Benzo[a]pyrene	μg/kg			<370 N1				
Benzo[b]fluoranthene	μg/kg			<370 N1				
Benzo[ghi]perylene	μg/kg			<370				
Benzo[k]fluoranthene	μg/kg			<370				
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg			<370				
Bis(2-chloroethyl) Ether	μg/kg			<370				
Bis(2-ethylhexyl) Phthalate	μg/kg			<370				
Bromophenyl Phenyl Ether,4-	μg/kg			<370				
Butyl Benzyl Phthalate	μg/kg			<370				
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg			<370				
Chlorophenol,2-	μg/kg			<370				
Chlorophenyl Phenyl Ether,4-	μg/kg			<370				
Chrysene	μg/kg			⊲370 N1				
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg			<750				
Di-n-octyl Phthalate	μg/kg			<370				

Page 139 of 306

								Page 139 of 306
	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units							
Dibenzo[a,h]anthracene	μg/kg			<370				
Dibenzofuran	μ g/k g							
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg		,	<370				
Dichlorophenol,2,4-	μ g /kg			<370				
Diethyl Phthalate	μg/kg			<370				
Dimethyl Phthalate	μg/kg			<370				
Dimethylaminoazobenzene,4-	μ g/ kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μ g /kg							
Dimethylphenol,2,4-	μg/kg			<370				
Dinitro-o-cresol,4,6-	μg/kg			<370				
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol,2,4-	μg/kg			<370				
Dinitrotoluene,2,4-	μg/kg			<370				
Dinitrotoluene,2,6-	μg/kg			<370	_			
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg			<370				
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg			<370 N1				
Fluorene	μg/kg			<370				
Hexachlorobenzene	μg/kg			<370				
Hexachlorobutadiene	μg/kg			<370				
Hexachlorocyclopentadiene	μg/kg			<370				
Hexachloroethane	μg/kg			<370				
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg			<370				1

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 140 of 306

								Page 140 01 300
	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units							
Isophorone	μg/kg	ļ <u>_</u>		<370				
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg							
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg			<370				
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg			⊲370				
N-nitrosodiphenylamine	μg/kg			<370				
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg			<370				
Naphthoquinone,1.4-	μg/kg							
Naphthylamine, alpha-	μg/kg							
Naphthylamine.beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg			<370				
Nitrophenol,2-	μg/kg			<370				
Nitrophenol,4-	μg/kg			<370				
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg			<370				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 141 of 306

								Page 141 01.
	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab, Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg			<370 N1				
Phenol	μg/kg			<370				
Phenylenediamine, 1,4-	μg/kg	<u> </u>						
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg			<370				
Ругепе	μg/kg			<370 N1				
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg	1						
Toluidine,o-	μg/kg							
Trichlorobenzene,1,2,4-	μg/kg			<370				
Trichlorophenol,2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg			<370				
Triethyl Phosphorothioate,0,0,0-	μg/kg							
Trinitrobenzene.1,3,5-	μg/kg							
Acetone	μg/kg			<38				
Acetonitrile	μg/kg							
Acrolein	μg/kg			<19				
Acrylonitrile	μg/kg			<19				
Allyl Chloride	μg/kg							
Benzene	μg/kg			<7.5				
Benzene (screening)	μg/kg	<16	<16			<15	<15	<16
Bromobenzene	μg/kg			<7.5				
Bromoform	μg/kg			<7.5				

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 142 of 306

								Page 142 of
	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units							
Carbon Disulfide	μg/kg			<7.5				
Carbon Tetrachloride	μg/kg			<7.5				
Chlorobenzene	μg/kg			<7.5				
Chlorodibromomethane	μg/kg		,	<7.5				
Chloroethane	μg/kg			<7.5				
Chloroethyl Vinyl Ether,2-	μg/kg			<7.5				
Chloroform	μg/kg			<7.5				
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μg/kg			<7.5				
Chlorotoluene,p-	μg/kg			<7.5				
Dibromomethane	μg/kg			<7.5				
Dichlorobenzene, 1,2-	μg/kg			<7.5				
Dichlorobenzene, 1,3-	μg/kg			<7.5				
Dichlorobenzene, 1,4-	μg/kg			<7.5				
Dichlorobromomethane	μg/kg			<7.5				
Dichlorodifluoromethane	μg/kg			<7.5				
Dichloroethane,1,1-	μg/kg			<7.5				
Dichloroethane,1,2-	µg∕kg			<7.5				
Dichloroethylene, 1, 1-	μg/kg			<7.5				
Dichloroethylene, 1,2-	μg/kg							
Dichloroethylene, 1,2-cis-	μg/kg			<7.5				
Dichloroethylene, 1,2-trans-	μg/kg			<7.5				
Dichloropropane, 1, 2-	μg/kg			<7.5				
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene,1,3-cis-	μg/kg			<7.5				
Dichloropropylene, 1,3-trans-	μg/kg			<7.5				
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg				·			

Page 143 of 306

								1 agc 143 01 3
	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units			30.44				
Ethylbenzene	μg/kg			<7.5				
Ethylbenzene (screening)	μg/kg	<23	<23			<22	<21	<23
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg			<19				
Iodomethane	μg/kg							
Isobutyl Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg			<7.5				
Methyl Chloride	μg/kg			<7.5				
Methyl Ethyl Ketone	μg/kg			<19				
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg			<19				
Methyl-tert-butyl Ether	μg/kg			<7.5				
Methylene Chloride	μg/kg			<7.5				
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							-
Propionitrile	μg/kg							
Styrene	μg/kg			<7.5				
Tetrachloroethane, 1, 1, 1, 2-	μg/kg			<7.5				
Tetrachloroethane, 1, 1, 2, 2-	μg/kg			<7.5				
Tetrachloroethylene	μg/kg			<7.5 N1				
Tetrachloroethylene (screening)	μg/kg	<24	<24			<23	<23	<24
Toluene	μg/kg			<7.5				
Toluene (screening)	μg/kg	<23	<22			<21	<21	<22
Trichloroethane, 1, 1, 1-	μg/kg			<7.5				
Trichloroethane, 1, 1, 1- (screening)	μg/kg	<390	<382			<368	<361	<382
Trichloroethane. 1, 1, 2-	μg/kg			<7.5	· -	T		

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 144 of 306

								Page 144 of
	Location ID	NK-SB-40	NK-SB-40	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41
	Sample ID	1016095	1016096	1016097	1016097	1016097	1016098	1016099
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996
	Sample Time	11:10	11:18	11:50	11:50	11:50	12:00	12:15
	Sample Depth	12' - 14'	14' - 15'	0' - 2'	0' - 2'	0' - 2'	2' - 4'	4' - 6'
	Laboratory	LEA	LEA	AEL	AEL	LEA	LEA	LEA
	Lab. Number	96-3603-352	96-3604-353	AEL96008137	AEL96010907	96-3605-354	96-3606-355	96-3607-356
Constituent	Units							
Trichloroethylene	μg/kg			<7.5				
Trichloroethylene (screening)	μg/kg	<38	<37			<36	<35	<37
Trichloromonofluoromethane	μg/kg			<7.5				
Trichloropropane, 1, 2, 3-	μg/kg			<7.5				
Vinyl Acetate	μg/kg			<7.5				
Vinyl Chloride	μg/kg			<7.5				
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg			<7.5				
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
	†		· ·		<u> </u>	1		

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 145 of 306

								Page 145 of 306
	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units							
Date Metals Analyzed	-	08/01/1996						
Date Organics Analyzed	-	07/30/1996	07/23/1996	07/23/1996	07/23/1996	07/23/1996	07/23/1996	10/08/1996
Date PCBs Analyzed	•							
Date Physical Analysed	-	08/07/1996						
Date Semi-volatile Organics Analyzed		08/08/1996						
Date of Metals SPLP Analysis	-							
Date of Metals SPLP Extraction	-							
Date of Metals TCLP Analysis	•							
Date of Other SPLP Analysis	-							
Extraction Fluid No.								
Dinoseb	μg/kg							
Arsenic	mg/kg	<1.2						
Arsenic (SPLP)	mg/L							
Barium	mg/kg	13.6						
Barium (SPLP)	mg/L							
Beryllium	mg/kg							
Cadmium	mg/kg	<3.61						
Cadmium (TCLP)	mg/l							
Cadmium (SPLP)	mg/L							
Chromium	mg/kg	<6.02		· ·				
Chromium (SPLP)	mg/L							
Chromium (Total)	mg/kg							
Chromium (Total) (TCLP)	mg/l							
Lead	mg/kg	<24.1						
Lead (TCLP)	mg/l							
Lead (SPLP)	mg/L							
Mercury	mg/kg	<0.241						
Mercury (SPLP)	mg/L							
Latin J. Drint don 06/20/09		1						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 146 of 306

	· -							Page 146 of 3
	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units							
Nickel	mg/kg	<12						
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg	<1.2						
Selenium (SPLP)	mg/L							
Silver	mg/kg	<6.02						
Silver (SPLP)	mg/L							
Zinc	mg/kg	23.2						
Zinc (TCLP)	mg/l							
Zinc (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene,2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane, 1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg							
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg	<40.5						
Acenaphthene	μg/kg	<410						
Acenaphthylene	μg/kg	<410						
Acetophenone	μg/kg							

Page 147 of 306

	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg	<410						
Benzidine	μg/kg	<410						
Benzo[a]anthracene	μg/kg	<410						
Benzo[a]pyrene	μg/kg	<410						
Benzo[b]fluoranthene	μg/kg	<410						
Benzo[ghi]perylene	μg/kg	<410						
Benzo[k]fluoranthene	μg/kg	<410						
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg	<410						
Bis(2-chloroethyl) Ether	μg/kg	<410						
Bis(2-ethylhexyl) Phthalate	μg/kg	<410						
Bromophenyl Phenyl Ether,4-	μg/kg	<410						
Butyl Benzyl Phthalate	μg/kg	<410						
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg	<410						
Chlorophenol,2-	μg/kg	<410						
Chlorophenyl Phenyl Ether,4-	μg/kg	<410						
Chrysene	μg/kg	<410						
Cresol,2-	μg/kg							
Cresol,3-	μg/kg							
Cresol,4-	μg/kg							
Di-n-butyl Phthalate	μg/kg	<410						
Di-n-octyl Phthalate	μg/kg	<410						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 148 of 306

								Page 148 of 3
	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units	**************************************						
Dibenzo[a,h]anthracene	μg/kg	<410						
Dibenzofuran	μg/kg	ŀ						
Dichloro-2-butylene, 1,4-trans-	μg/kg							
Dichlorobenzidine,3,3'-	μg/kg	<410						
Dichlorophenol,2,4-	μg/kg	<410						
Diethyl Phthalate	μg/kg	<410						
Dimethyl Phthalate	μg/kg	<410						
Dimethylaminoazobenzene,4-	μg/kg							
Dimethylbenzidine,3,3'-	μg/kg							
Dimethylbenzo[a]anthracene,7,12-	μg/kg							
Dimethylphenethylamine,alpha,alpha-	μg/kg							
Dimethylphenol,2,4-	μg/kg	<410						
Dinitro-o-cresol,4,6-	μg/kg	<410						
Dinitrobenzene,1,3-	μg/kg							
Dinitrophenol,2.4-	μg/kg	<410						
Dinitrotoluene,2,4-	μg/kg	<410						
Dinitrotoluene,2,6-	μg/kg	<410						
Diphenylamine	μg/kg							
Diphenylhydrazine,1,2-	μg/kg	<410						
Ethyl Methanesulfonate	μg/kg							
Fluoranthene	μg/kg	<410						
Fluorene	μg/kg	<410						
Hexachlorobenzene	μg/kg	<410						
Hexachlorobutadiene	μg/kg	<410						
Hexachlorocyclopentadiene	μg/kg	<410						
Hexachloroethane	μg/kg	<410						
Hexachloropropylene	μg/kg							
Indeno(1,2,3-cd)pyrene	μg/kg	<410						

Page 149 of 306

								1 age 147 01 30
	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units							
Isophorone	μg/kg	<410						
Isosafrole	μg/kg							
Methapyrilene	μg/kg							
Methyl Methanesulfonate	μg/kg		,					
Methylcholanthrene,3-	μg/kg							
Methylnaphthalene,2-	μg/kg							
N-nitroso-di-n-butylamine	μg/kg							
N-nitroso-n-propylamine	μg/kg	<410						
N-nitrosodiethylamine	μg/kg							
N-nitrosodimethylamine	μg/kg	<410						
N-nitrosodiphenylamine	μg/kg	<410						
N-nitrosomethylethylamine	μg/kg							
N-nitrosomorpholine	μg/kg							
N-nitrosopiperidine	μg/kg							
Naphthalene	μg/kg	<410						
Naphthoquinone, 1,4-	μg/kg							
Naphthylamine,alpha-	μg/kg							
Naphthylamine, beta-	μg/kg							
Nitro-o-toluidine,5-	μg/kg							
Nitroaniline,2-	μg/kg							
Nitroaniline,3-	μg/kg							
Nitroaniline,4-	μg/kg							
Nitrobenzene	μg/kg	<410						
Nitrophenol,2-	μg/kg	<410						
Nitrophenol,4-	μg/kg	<410						
Nitroquinoline-1-oxide,4-	μg/kg							
Nitrosopyrrolidine,n-	μg/kg							
Pentachlorophenol	μg/kg	<410						

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 150 of 306

								Page 130 01 30
	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
_	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units							
Phenacetin	μg/kg							
Phenanthrene	μg/kg	<410						
Phenoi	μg/kg	<410						
Phenylenediamine, 1,4-	μg/kg		1					
Picoline,2-	μg/kg							
Pronamide	μg/kg							
Propane),2,2'-oxybis(1-chloro-	μg/kg							
Propane),2,2'-oxybis(2-chloro-	μg/kg	<410						
Pyrene	μg/kg	<410						
Pyridine	μg/kg							
Safrole	μg/kg							
Tetrachlorobenzene, 1, 2, 4, 5-	μg/kg							
Tetrachlorophenol, 2, 3, 4, 6-	μg/kg	Ö						
Toluidine,o-	μg/kg							
Trichlorobenzene, 1, 2, 4-	μg/kg	<410						
Trichlorophenol.2,4,5-	μg/kg							
Trichlorophenol,2,4,6-	μg/kg	<410						
Triethyl Phosphorothioate.o,o,o-	μg/kg	<u> </u>						
Trinitrobenzene,1,3,5-	μg/kg							
Acetone	μg/kg	<42						
Acetonitrile	μg/kg							
Acrolein	μg/kg	<21						
Acrylonitrile	μg/kg	<21						
Allyl Chloride	μg/kg							
Benzene	μg/kg	<8.5						
Benzene (screening)	μg/kg		<15	<16	<16	<14	<15	<8
Bromobenzene	μg/kg	<8.5						
Bromoform	μg/kg	<8.5						

Page 151 of 306

		·						Page 151 of
	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units							
Carbon Disulfide	μg/kg	<8.5						
Carbon Tetrachloride	μg/kg	<8.5						
Chlorobenzene	μg/kg	<8.5			l			
Chlorodibromomethane	μg/kg	<8.5						
Chloroethane	μ g/k g	<8.5						
Chloroethyl Vinyl Ether,2-	μg/kg	<8.5						
Chloroform	μg/kg	<8.5				_		
Chloroprene, beta-	μg/kg							
Chlorotoluene,o-	μ g/ kg	<8.5						
Chlorotoluene,p-	μ g/k g	<8.5						
Dibromomethane	μg/kg	<8.5						
Dichlorobenzene,1,2-	μg/kg	<8.5						
Dichlorobenzene,1,3-	μg/kg	<8.5						
Dichlorobenzene,1,4-	μg/kg	<8.5						
Dichlorobromomethane	μg/kg	<8.5						
Dichlorodifluoromethane	μg/kg	<8.5						
Dichloroethane, 1, 1-	μg/kg	<8.5						
Dichloroethane,1,2-	μg/kg	<8.5						
Dichloroethylene, 1, 1-	μg/kg	<8.5						
Dichloroethylene, 1, 2-	μg/kg							
Dichloroethylene, 1,2-cis-	μg/kg	<8.5						
Dichloroethylene, 1,2-trans-	μg/kg	<8.5						
Dichloropropane, 1, 2-	μg/kg	<8.5						
Dichloropropylene,1,3-	μg/kg							
Dichloropropylene, 1, 3-cis-	μg/kg	<8.5						
Dichloropropylene,1,3-trans-	μg/kg	<8.5						
Dioxane, 1,4-	μg/kg							
Ethyl Methacrylate	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 152 of 306

	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	Page 152 of 3
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
		07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Date	12:25			12:40	12:45	12:58	11:30
	Sample Time		12:25	12:30				
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units	ļ	-					
Ethylbenzene	μg/kg	<8.5						
Ethylbenzene (screening)	μg/kg		<22	<23	<23	<21	<21	<17
Ethylene Dibromide	μg/kg							
Hexanone,2-	μg/kg	<21	1					
Iodomethane	μg/kg							
Isobutyi Alcohol	μg/kg							
Methacrylonitrile	μg/kg							
Methyl Bromide	μg/kg	<8.5						
Methyl Chloride	μg/kg	<8.5						
Methyl Ethyl Ketone	μg/kg	<21						
Methyl Methacrylate	μg/kg							
Methyl-2-pentanone,4-	μg/kg	<21						
Methyl-tert-butyl Ether	μg/kg	<8.5						
Methylene Chloride	μg/kg	<8.5						
Pentachlorobenzene	μg/kg							
Pentachloroethane	μg/kg							
Pentachloronitrobenzene	μg/kg							
Propionitrile	μg/kg							
Styrene	μg/kg	<8.5						
Tetrachloroethane, 1, 1, 1, 2-	μg/kg	<8.5						
Tetrachloroethane, 1, 1, 2, 2-	μg/kg	<8.5						
Tetrachloroethylene	μg/kg	<8.5						
Tetrachloroethylene (screening)	μg/kg		<23	<24	<24	<22	<23	<21
Toluene	μg/kg	<8.5						
Toluene (screening)	μg/kg		<21	<22	<23	<20	<21	<12
Trichloroethane,1,1,1-	μg/kg	<8.5	1		1			
Trichloroethane, 1, 1, 1- (screening)	μg/kg		<368	<382	<390	<348	<361	<211
Trichloroethane,1,1,2-	μg/kg	<8.5					<u> </u>	

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 153 of 306

	Location ID	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-41	NK-SB-88
	Sample ID	1016100	1016100	1016101	1016102	1016103	1016104	1018854
	Sample Date	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	07/19/1996	10/07/1996
	Sample Time	12:25	12:25	12:30	12:40	12:45	12:58	11:30
	Sample Depth	6' - 8'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 15'	0' - 2'
	Laboratory	AEL	LEA	LEA	LEA	LEA	LEA	LEA
	Lab. Number	AEL96008138	96-3608-357	96-3607-358	96-3608-359	96-3609-360	96-3612-363	96-4971-172
Constituent	Units							
Trichloroethylene	μg/kg	<8.5						
Trichloroethylene (screening)	μg/kg		10 J	<37	<38	<34	<35	<21
Trichloromonotluoromethane	μg/kg	<8.5						
Trichloropropane, 1, 2.3-	μg/kg	<8.5						
Vinyl Acetate	μg/kg	<8.5						
Vinyl Chloride	μg/kg	<8.5						
Xylene,o- (screening)	μg/kg							
Xylenes (Total)	μg/kg	<8.5						
Xylenes (Total) (screening)	μg/kg							
Xylenes,m- & p- (screening)	μg/kg							
								

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 154 of 306

							Page 154 of 30
Location ID	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-89
Sample ID	1018855	1018856	1018857	1018858	1018858	1018859	1018860
Sample Date	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996
Sample Time	11:40	11:50	13:00	13:10	13:10	13:35	14:15
Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	10' - 12'	0' - 2'
Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
Lab. Number	96-4972-173	96-4973-174	96-4974-175	AEL96011394	96-4975-176	96-4977-178	96-4978-182
Units							
-							
•	10/08/1996	10/08/1996	10/08/1996	10/09/1996	10/08/1996	10/08/1996	10/08/1996
•							
•				10/23/1996			
•				10/22/1996			
-							
-							
•							
•							
-							
μg/kg							
mg/kg							
mg/L							
mg/kg							
mg/L							
mg/kg							
mg/kg							
mg/l							
mg/L							
mg/kg							
mg/L							
mg/kg							
mg/l							
mg/kg							
mg/l							
mg/L							
mg/kg							
mg/L							
	Sample ID Sample Date Sample Date Sample Depth Laboratory Lab. Number Units	Sample ID 1018855 Sample Date 10/07/1996 Sample Time 11:40 Sample Depth 2' - 4' Laboratory LEA Lab. Number 96-4972-173 Units - 10/08/1996	Sample ID 1018855 1018856 Sample Date 10/07/1996 10/07/1996 Sample Time 11:40 11:50 Sample Depth 2' - 4' 2' - 4' Laboratory LEA LEA Lab. Number 96-4972-173 96-4973-174 Units - - - - - <tr< td=""><td> Sample ID 1018855 1018856 10107/1996 10/07/1996 10/07/1996 10/07/1996 10/07/1996 10/07/1996 13:00</td><td>Sample ID 1018855 1018856 1018857 1018858 Sample Date 10/07/1996 10/07/1996 10/07/1996 10/07/1996 Sample Time 11:40 11:50 13:00 13:10 Sample Depth 2' - 4' 2' - 4' 4' - 6' 6' - 8' Laboratory LEA LEA LEA AEL Lab Number 96-4972-173 96-4973-174 96-4974-175 AEL96011394 Units - 10/08/1996 10/08/1996 10/08/1996 10/09/1996 - 10/08/1996 10/08/1996 10/08/1996 10/08/1996 10/09/1996 - 10/08/1996<td>Sample ID 1018855 1018856 1018857 1018858 1018858 Sample Date 10/07/1996 10/07/1996 10/07/1996 10/07/1996 10/07/1996 Sample Time 11:40 11:50 13:00 13:10 13:10 13:10 Sample Depth 2' - 4' 2' - 4' 4' - 6' 6' - 8' 6' - 8' Laboratory LEA LEA LEA AEL LEA AEL LEA AEL LEA LEA</td><td> Sample ID 1018855 1018856 1018857 1018858 1018858 1018859 </td></td></tr<>	Sample ID 1018855 1018856 10107/1996 10/07/1996 10/07/1996 10/07/1996 10/07/1996 10/07/1996 13:00	Sample ID 1018855 1018856 1018857 1018858 Sample Date 10/07/1996 10/07/1996 10/07/1996 10/07/1996 Sample Time 11:40 11:50 13:00 13:10 Sample Depth 2' - 4' 2' - 4' 4' - 6' 6' - 8' Laboratory LEA LEA LEA AEL Lab Number 96-4972-173 96-4973-174 96-4974-175 AEL96011394 Units - 10/08/1996 10/08/1996 10/08/1996 10/09/1996 - 10/08/1996 10/08/1996 10/08/1996 10/08/1996 10/09/1996 - 10/08/1996 <td>Sample ID 1018855 1018856 1018857 1018858 1018858 Sample Date 10/07/1996 10/07/1996 10/07/1996 10/07/1996 10/07/1996 Sample Time 11:40 11:50 13:00 13:10 13:10 13:10 Sample Depth 2' - 4' 2' - 4' 4' - 6' 6' - 8' 6' - 8' Laboratory LEA LEA LEA AEL LEA AEL LEA AEL LEA LEA</td> <td> Sample ID 1018855 1018856 1018857 1018858 1018858 1018859 </td>	Sample ID 1018855 1018856 1018857 1018858 1018858 Sample Date 10/07/1996 10/07/1996 10/07/1996 10/07/1996 10/07/1996 Sample Time 11:40 11:50 13:00 13:10 13:10 13:10 Sample Depth 2' - 4' 2' - 4' 4' - 6' 6' - 8' 6' - 8' Laboratory LEA LEA LEA AEL LEA AEL LEA AEL LEA LEA	Sample ID 1018855 1018856 1018857 1018858 1018858 1018859

Page 155 of 306

	Location ID	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-89
	Sample ID	1018855	1018856	1018857	1018858	1018858	1018859	1018860
	Sample Date	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996
	Sample Time	11:40	11:50	13:00	13:10	13:10	13:35	14:15
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	10' - 12'	0' - 2'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-4972-173	96-4973-174	96-4974-175	AEL96011394	96-4975-176	96-4977-178	96-4978-182
Constituent	Units							
Nickel	mg/kg							
Nickel (TCLP)	mg/l							
Nickel (SPLP)	mg/L							
Selenium	mg/kg		•					
Selenium (SPLP)	mg/L							
Silver	mg/kg							
Silver (SPLP)	mg/L							
Zine	mg/kg							
Zinc (TCLP)	mg/l							
Zine (SPLP)	mg/L							
PCB 1016	μg/kg							
PCB 1221	μg/kg							
PCB 1232	μg/kg							
PCB 1242	μg/kg							
PCB 1248	μg/kg							
PCB 1254	μg/kg							
PCB 1260	μg/kg							
Acetylaminofluorene.2-	μg/kg							
Aramite	μg/kg							
Dibromo-3-chloropropane,1,2-	μg/kg							
Dimethoate	μg/kg							
Disulfoton	μg/kg		<u> </u>					
Famphur	μg/kg							
Phorate	μg/kg							
Total Petroleum Hydrocarbons	mg/kg				<39.0			
Acenaphthene	μg/kg				<390			
Acenaphthylene	μg/kg				<390			
Acetophenone	μg/kg							

Table 3 SUMMARY OF ANALYTICAL RESULTS - SOIL P&W East Hartford: X-401 Drywells

Page 156 of 306

<u> </u>		T				T		Page 136 01 30
	Location ID	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-88	NK-SB-89
	Sample ID	1018855	1018856	1018857	1018858	1018858	1018859	1018860
	Sample Date	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996	10/07/1996
	Sample Time	11:40	11:50	13:00	13:10	13:10	13:35	14:15
	Sample Depth	2' - 4'	2' - 4'	4' - 6'	6' - 8'	6' - 8'	10' - 12'	0' - 2'
	Laboratory	LEA	LEA	LEA	AEL	LEA	LEA	LEA
	Lab. Number	96-4972-173	96-4973-174	96-4974-175	AEL96011394	96-4975-176	96-4977-178	96-4978-182
Constituent	Units							
Aminobiphenyl,4-	μg/kg							
Aniline	μg/kg							
Anthracene	μg/kg				<390			
Benzidine	μg/kg		,		<390			
Benzo[a]anthracene	μg/kg				<390			
Benzo[a]pyrene	μg/kg				<390			
Benzo[b]fluoranthene	μg/kg				<390			
Benzo[ghi]perylene	μg/kg				<390			
Benzo[k]fluoranthene	μg/kg				<390			
Benzoic Acid	μg/kg							
Benzyl Alcohol	μg/kg							
Bis(2-chloroethoxy)methane	μg/kg				<390			
Bis(2-chloroethyl) Ether	μg/kg				<390			
Bis(2-ethylhexyl) Phthalate	μg/kg				<390			
Bromophenyl Phenyl Ether,4-	μg/kg				<390			
Butyl Benzyl Phthalate	μg/kg				<390			
Carbazole	μg/kg							
Chloro-m-cresol,p-	μg/kg							
Chloroaniline,4-	μg/kg							
Chloronaphthalene,2-	μg/kg				<390			
Chlorophenol,2-	μg/kg				<390			
Chlorophenyl Phenyl Ether,4-	μg/kg				<390			
Chrysene	μg/kg				<390			
Cresol,2-	μg/kg							
Cresol,3-	μg/kg				1			
Cresol,4-	μg/kg	<u> </u>						
Di-n-butyl Phthalate	μg/kg			 	<390		 	
Di-n-octyl Phthalate	μg/kg	1	_		<390			
Di ii voij. I manime	La9	 		 	1770	+	-	

